

A093689


Least k such that prime(n) divides A007406(k), the numerator of the kth generalized harmonic number H(k,2) = Sum 1/i^2 for i=1..k.


2



2, 3, 5, 6, 8, 9, 11, 14, 15, 15, 4, 11, 23, 26, 6, 30, 33, 35, 36, 39, 41, 44, 15, 50, 51, 39, 54, 56, 23, 65, 44, 69, 37, 75, 25, 61, 61, 86, 89, 85, 95, 96, 98, 99, 99, 111, 113, 114, 116, 119, 60, 125, 128, 131, 50, 135, 138, 140, 141, 146, 27, 43, 156, 158, 165, 168
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,1


COMMENTS

Wolstenholme's theorem states that prime p > 3 divides A007406(p1). It is not difficult to show that this implies p also divides A007406((p1)/2). In most instances, a(n) = (prime(n)1)/2. Exceptions occur for primes in A093690, which have a smaller a(n).
Note that if p divides A007406(k) for k < (p1)/2, then p divides A007406(pk1).
Another interesting observation: it appears that p=7 is the only prime that divides A007406(k) for some k > p1; 7 divides A007406(26) = 23507608254234781649. Also note that when p > 3 and 2p1 are both prime, they divide A007406(p1).


LINKS

T. D. Noe, Table of n, a(n) for n = 3..1000
Eric Weisstein's World of Mathematics, Harmonic Number
Eric Weisstein's World of Mathematics, Wolstenholme's Theorem


MATHEMATICA

nn=1000; t=Numerator[HarmonicNumber[Range[nn], 2]]; Table[p=Prime[n]; i=1; While[i<nn && Mod[t[[i]], p]>0, i++ ]; i, {n, 3, PrimePi[nn]}]


CROSSREFS

Cf. A072984 (least k such that prime(n) divides the numerator of the kth harmonic number), A093569 (for p = prime(n), the number of integers k < p1 such that p divides A001008((k)).
Sequence in context: A277124 A094820 A309793 * A097702 A082583 A274332
Adjacent sequences: A093686 A093687 A093688 * A093690 A093691 A093692


KEYWORD

nonn


AUTHOR

T. D. Noe, Apr 09 2004


STATUS

approved



