login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer pairs (x,y) such that 0<x<y<=n and x*y<=2n.
18

%I #5 Apr 07 2012 13:47:08

%S 0,1,3,5,7,10,12,15,18,21,24,28,30,34,38,41,44,49,51,56,60,63,67,72,

%T 75,79,83,88,91,97,99,104,109,112,117,123,125,130,135,140,143,149,152,

%U 157,163,167,170,177,180,186,190,194,199,205,209,215,219,223

%N Number of integer pairs (x,y) such that 0<x<y<=n and x*y<=2n.

%C Guide to related sequences:

%C A056924 ... 1<=x<y<=n .... x*y=n

%C A211159 ... 1<=x<y<=n .... x*y=n+1

%C A211261 ... 1<=x<y<=n .... x*y=2n

%C A211262 ... 1<=x<y<=n .... x*y=3n

%C A211263 ... 1<=x<y<=n .... x*y=floor(n/2)

%C A211264 ... 1<=x<y<=n .... x*y<=n

%C A211265 ... 1<=x<y<=n .... x*y<=n+1

%C A211266 ... 1<=x<y<=n .... x*y<=2n

%C A211267 ... 1<=x<y<=n .... x*y<=3n

%C A181972 ... 1<=x<y<=n .... x*y<=floor(n/2)

%C A038548 ... 1<=x<=y<=n ... x*y=n

%C A072670 ... 1<=x<=y<=n ... x*y=n+1

%C A211270 ... 1<=x<=y<=n ... x*y=2n

%C A211271 ... 1<=x<=y<=n ... x*y=3n

%C A211272 ... 1<=x<=y<=n ... x*y=floor(n/2)

%C A094820 ... 1<=x<=y<=n ... x*y<=n

%C A091627 ... 1<=x<=y<=n ... x*y<=n+1

%C A211273 ... 1<=x<=y<=n ... x*y<=2n

%C A211274 ... 1<=x<=y<=n ... x*y<=3n

%C A211275 ... 1<=x<=y<=n ... x*y<=floor(n/2)

%e a(6) counts these pairs: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4).

%t a = 1; b = n; z1 = 120;

%t t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},

%t {y, x + 1, b}]]

%t c[n_, k_] := c[n, k] = Count[t[n], k]

%t Table[c[n, n], {n, 1, z1}] (* A056924 *)

%t Table[c[n, n + 1], {n, 1, z1}] (* A211159 *)

%t Table[c[n, 2*n], {n, 1, z1}] (* A211261 *)

%t Table[c[n, 3*n], {n, 1, z1}] (* A211262 *)

%t Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211263 *)

%t Print

%t c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]

%t Table[c1[n, n], {n, 1, z1}] (* A211264 *)

%t Table[c1[n, n + 1], {n, 1, z1}] (* A211265 *)

%t Table[c1[n, 2*n], {n, 1, z1}] (* A211266 *)

%t Table[c1[n, 3*n], {n, 1, z1}] (* A211267 *)

%t Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)

%Y Cf. A211261, A211264.

%K nonn

%O 1,3

%A _Clark Kimberling_, Apr 06 2012