login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211261
Number of integer pairs (x,y) such that 0<x<y<=n and x*y=2n.
10
0, 0, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 3, 3, 2, 1, 4, 2, 2, 3, 3, 1, 5, 1, 2, 3, 2, 3, 5, 1, 2, 3, 4, 1, 5, 1, 3, 5, 2, 1, 5, 2, 3, 3, 3, 1, 5, 3, 4, 3, 2, 1, 7, 1, 2, 5, 3, 3, 5, 1, 3, 3, 5, 1, 6, 1, 2, 5, 3, 3, 5, 1, 5, 4, 2, 1, 7, 3, 2, 3, 4, 1, 8, 3, 3, 3, 2, 3, 6, 1, 3, 5
OFFSET
1,6
COMMENTS
For a guide to related sequences, see A211266.
LINKS
FORMULA
a(n) = floor(A000005(2*n)/2)-1. - Antti Karttunen, Sep 30 2018, after David A. Corneth's PARI-program
MATHEMATICA
a = 1; b = n; z1 = 120;
t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
{y, x + 1, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, n], {n, 1, z1}] (* A056924 *)
Table[c[n, n + 1], {n, 1, z1}] (* A211159 *)
Table[c[n, 2*n], {n, 1, z1}] (* A211261 *)
Table[c[n, 3*n], {n, 1, z1}] (* A211262 *)
Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211263 *)
Print
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
Table[c1[n, n], {n, 1, z1}] (* A211264 *)
Table[c1[n, n + 1], {n, 1, z1}] (* A211265 *)
Table[c1[n, 2*n], {n, 1, z1}] (* A211266 *)
Table[c1[n, 3*n], {n, 1, z1}] (* A211267 *)
Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)
PROG
(PARI) A211261(n) = sumdiv(2*n, y, (((2*n/y)<y)&&(y<=n))); \\ Antti Karttunen, Sep 30 2018
(PARI) a(n) = numdiv(n<<1)>>1-1 \\ David A. Corneth, Sep 30 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 06 2012
STATUS
approved