OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..159
FORMULA
Empirical: a(n) = 44*a(n-1) -834*a(n-2) +8822*a(n-3) -56045*a(n-4) +210804*a(n-5) -405935*a(n-6) +122980*a(n-7) +727296*a(n-8) -286484*a(n-9) -957331*a(n-10) -589182*a(n-11) -162870*a(n-12) -21384*a(n-13) -1080*a(n-14)
EXAMPLE
Some solutions for n=3
..0.-1..1.-3....6.-2..3.-5....0..1.-2..0...-2..1..0..3....0.-3..3..1
.-1..2.-2..4...-2.-2..1..1....1.-2..3.-1....1..0.-1.-2...-3..6.-6..2
..1.-2..2.-4....3..1..0.-2...-2..3.-4..2....0.-1..2..1....3.-6..6.-2
.-3..4.-4..6...-5..1.-2..4....0.-1..2..0....3.-2..1.-4....1..2.-2.-2
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 06 2012
STATUS
approved