login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070907
Every fourth Bell number A000110.
0
1, 15, 4140, 4213597, 10480142147, 51724158235372, 445958869294805289, 6160539404599934652455, 128064670049908713818925644, 3819714729894818339975525681317, 157450588391204931289324344702531067
OFFSET
0,2
FORMULA
a(n) = A000110(4*n).
a(n) = exp(-1)*Sum_{k>=0} k^(4n)/k!.
E.g.f.: exp(x*(d_z)^4)*(exp(exp(z)-1)) |_{z=0}, with the derivative operator d_z := d/dz. Adapted from eqs. (14) and (15) of the 1999 C. M. Bender reference given in A000110.
MATHEMATICA
Table[BellB[4*n], {n, 0, 10}] (* Amiram Eldar, Jun 11 2022 *)
PROG
(PARI) for(n=0, 50, print1(round(sum(i=0, 1000, i^(4*n)/(i)!)/exp(1)), ", "))
(Sage) [bell_number(4*n) for n in range(0, 11)] # Zerinvary Lajos, May 15 2009
(Python)
from itertools import accumulate, islice
def A070907_gen(): # generator of terms
yield 1
blist, b = (1, ), 1
while True:
for _ in range(4):
blist = list(accumulate(blist, initial=(b:=blist[-1])))
yield b
A070907_list = list(islice(A070907_gen(), 20)) # Chai Wah Wu, Jun 22 2022
CROSSREFS
Cf. A000110.
Sequence in context: A139297 A211251 A208469 * A208053 A361453 A079919
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 19 2002
STATUS
approved