OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..150
FORMULA
E.g.f.: Sum_{n>=0} Product_{k=1..n} (1 - exp(-2*(2*k-1)*x)) / (1 + exp(-2*(2*k-1)*x)).
a(n) ~ 2^(4*n+7/2) * n^(2*n+1) / (exp(2*n) * Pi^(2*n+1)). - Vaclav Kotesovec, Nov 02 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 88*x^3/3! + 2280*x^4/4! + 92416*x^5/5! +...
where
A(x) = 1 + tanh(x) + tanh(x)*tanh(3*x) + tanh(x)*tanh(3*x)*tanh(5*x) + tanh(x)*tanh(3*x)*tanh(5*x)*tanh(7*x) +...
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, prod(k=1, m, tanh((2*k-1)*X))); n!*polcoeff(Egf, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 24 2012
STATUS
approved