login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060918
Expansion of e.g.f.: exp((-1)^k/k*LambertW(-x)^k)/(k-1)!, k=4.
4
1, 20, 360, 6860, 143570, 3321864, 84756000, 2372001720, 72384192540, 2394775746220, 85443353291296, 3271908306712500, 133893717061821080, 5832748749666611920, 269542701201588099840, 13172225935626444660144, 678788199609330554538000, 36790272488566573278647940
OFFSET
4,2
COMMENTS
a(n) = A243098(n,4)/6. - Alois P. Heinz, Aug 19 2014
LINKS
FORMULA
a(n) = (n-1)!/(k-1)!*Sum_{i=0..floor((n-k)/k)} 1/(i!*k^i)*n^(n-(i+1)*k)/(n-(i+1)*k)!, k=4.
a(n) ~ 1/6*exp(1/4)*n^(n-1). - Vaclav Kotesovec, Nov 27 2012
MATHEMATICA
CoefficientList[Series[E^(1/4*LambertW[-x]^4)/6, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(exp(lambertw(-x)^4/4)/3! - 1/3!)) \\ G. C. Greubel, Feb 19 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 10 2001
STATUS
approved