OFFSET
1,1
LINKS
Harry J. Smith, Table of n, a(n) for n=1,...,200
Henry Bottomley, Illustration of initial terms
Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
FORMULA
a(n) = 4^n/6+2^n+4/3 = (2^n+2)*(2^n+4)/6 = 4*A007581(n-1) = 4(a(n-1)-1)-2^n = A028400(n-1)-A002450(n-1).
From Colin Barker, Nov 28 2012: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3).
G.f.: -4*x*(5*x^2-5*x+1) / ((x-1)*(2*x-1)*(4*x-1)). (End)
E.g.f.: (exp(4*x) + 6*exp(2*x) + 8*exp(x) - 15)/6. - Stefano Spezia, Dec 26 2024
MATHEMATICA
LinearRecurrence[{7, -14, 8}, {4, 8, 20}, 30] (* Harvey P. Dale, Sep 01 2023 *)
PROG
(PARI) a(n) = { (2^n + 2)*(2^n + 4)/6 } \\ Harry J. Smith, Jul 14 2009
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Henry Bottomley, Apr 10 2001
STATUS
approved