login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243098
Number T(n,k) of endofunctions on [n] with all cycles of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
8
1, 0, 1, 0, 3, 1, 0, 16, 6, 2, 0, 125, 51, 24, 6, 0, 1296, 560, 300, 120, 24, 0, 16807, 7575, 4360, 2160, 720, 120, 0, 262144, 122052, 73710, 41160, 17640, 5040, 720, 0, 4782969, 2285353, 1430016, 861420, 430080, 161280, 40320, 5040
OFFSET
0,5
COMMENTS
T(0,0) = 1 by convention.
LINKS
FORMULA
E.g.f. of column k>0: exp((-LambertW(-x))^k/k), e.g.f. of column k=0: 1.
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 1;
0, 16, 6, 2;
0, 125, 51, 24, 6;
0, 1296, 560, 300, 120, 24;
0, 16807, 7575, 4360, 2160, 720, 120;
0, 262144, 122052, 73710, 41160, 17640, 5040, 720;
...
MAPLE
with(combinat):
T:= (n, k)-> `if`(k*n=0, `if`(k+n=0, 1, 0),
add(binomial(n-1, j*k-1)*n^(n-j*k)*(k-1)!^j*
multinomial(j*k, k$j, 0)/j!, j=0..n/k)):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
multinomial[n_, k_] := n!/Times @@ (k!); T[n_, k_] := If[k*n==0, If[k+n == 0, 1, 0], Sum[Binomial[n-1, j*k-1]*n^(n-j*k)*(k-1)!^j*multinomial[j*k, Append[Array[k&, j], 0]]/j!, {j, 0, n/k}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
CROSSREFS
Columns k=0-4 give: A000007, A000272(n+1) for n>0, A057817(n+1), 2*A060917, 6*A060918.
Row sums give A241980.
T(2n,n) gives A246050.
Main diagonal gives A000142(n-1) for n>0.
Sequence in context: A131222 A228334 A114151 * A360177 A241981 A147723
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 18 2014
STATUS
approved