login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241980
Number of endofunctions on [n] where all cycle lengths are equal.
4
1, 1, 4, 24, 206, 2300, 31742, 522466, 9996478, 218088504, 5344652492, 145386399554, 4347272984936, 141737636485588, 5004538251283846, 190247639729155110, 7747479351505166738, 336492490519027631984, 15526758954835131888980, 758548951300064645742034
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{j=0..n} C(n-1,j-1) * n^(n-j) * A005225(j).
a(n) = Sum_{k=0..n} A243098(n,k).
MAPLE
with(numtheory):
b:= n-> `if`(n=0, 1, n!*add((d!*(n/d)^d)^(-1), d=divisors(n))):
a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j), j=0..n):
seq(a(n), n=0..25);
MATHEMATICA
nn=20; t[x_]:=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0, nn]!CoefficientList[Series[1+Sum[Exp[t[x]^i/i]-1, {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 11 2014 *)
CROSSREFS
Cf. A005225, A061356, A212789, A242027 (column k=1).
Row sums of A243098.
Sequence in context: A240429 A240297 A050388 * A368267 A297218 A010039
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 10 2014
STATUS
approved