login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241982
Number of endofunctions on [2n] where the largest cycle length equals n.
3
1, 3, 93, 8600, 1719060, 604727424, 331079253120, 260480095349760, 278592031202284800, 388855261570122547200, 686533182382689959116800, 1495779844806108697677004800, 3942052104672989614027181260800, 12360865524060039746012601384960000
OFFSET
0,2
LINKS
FORMULA
a(n) = A241981(2n,n).
a(n) ~ 2^(3*n+1/2) * n^(2*n-1) / exp(n). - Vaclav Kotesovec, Aug 19 2014
EXAMPLE
a(1) = 3: (1,1), (1,2), (2,2).
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
a:= n-> `if`(n=0, 1, A(2*n, n) -A(2*n, n-1)):
seq(a(n), n=0..15);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = Which[n==0, 1, i<1, 0, True, Sum[(i-1)!^j* multinomial[n, Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1], {j, 0, n/i} ] ];
A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, Min[j, k]], {j, 0, n}];
a[n_] := If[n == 0, 1, A[2n, n] - A[2n, n-1]];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 01 2017, translated from Maple *)
CROSSREFS
Sequence in context: A288070 A116292 A139543 * A037113 A142887 A297489
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 10 2014
STATUS
approved