OFFSET
0,5
COMMENTS
This is also the matrix product of the unsigned Lah numbers and the Stirling cycle numbers. See also A079639 and A079640 for variants based on an (1,1)-offset of the number triangles. - Peter Luschny, Apr 12 2015
The Bell transform of A029767(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016
Essentially the same as A079638. - Peter Bala, Feb 12 2022
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Paul Barry, Exponential Riordan arrays and permutation enumeration,Journal of Integer Sequences, Vol. 13 (2010).
FORMULA
Row sums are A002866.
Second column is A029767.
T(n,m) = n! * Sum_{k=m..n} Stirling1(k,m)*2^(n-k)*binomial(n-1,k-1)/k!, n >= m >= 0. - Vladimir Kruchinin, Sep 27 2012
EXAMPLE
Number triangle starts:
1,
0, 1;
0, 3, 1;
0, 14, 9, 1;
0, 90, 83, 18, 1;
0, 744, 870, 275, 30, 1;
...
MAPLE
RioExp := (d, h, n, k) -> coeftayl(d*h^k, x=0, n)*n!/k!:
A131222 := (n, k) -> RioExp(1, log((1-x)/(1-2*x)), n, k):
seq(print(seq(A131222(n, k), k=0..n)), n=0..5); # Peter Luschny, Apr 15 2015
# The function BellMatrix is defined in A264428.
BellMatrix(n -> `if`(n=0, 1, n!*(2^(n+1)-1)), 9); # Peter Luschny, Jan 27 2016
MATHEMATICA
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[If[# == 0, 1, #! (2^(#+1) - 1)]&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
PROG
(Maxima) T(n, m):=if n=0 and m=0 then 1 else n!*sum((stirling1(k, m)*2^(n-k)*binomial(n-1, k-1))/k!, k, m, n); /* Vladimir Kruchinin, Sep 27 2012 */
(Sage)
def Lah(n, k):
if n == k: return 1
if k<0 or k>n: return 0
return (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1))
matrix(ZZ, 8, Lah) * matrix(ZZ, 8, stirling_number1) # as a square matrix Peter Luschny, Apr 12 2015
# alternatively:
(Sage) # uses[bell_matrix from A264428]
bell_matrix(lambda n: A029767(n+1), 10) # Peter Luschny, Jan 18 2016
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Jun 18 2007
STATUS
approved