login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079640
Matrix product of unsigned Stirling1-triangle |A008275(n,k)| and unsigned Lah-triangle |A008297(n,k)|.
3
1, 3, 1, 14, 9, 1, 88, 83, 18, 1, 694, 860, 275, 30, 1, 6578, 10084, 4245, 685, 45, 1, 72792, 132888, 69244, 14735, 1435, 63, 1, 920904, 1950024, 1209880, 318969, 41020, 2674, 84, 1, 13109088, 31580472, 22715972, 7133784, 1137549, 98028, 4578, 108, 1
OFFSET
1,2
COMMENTS
Also the Bell transform of A007840(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016
FORMULA
T(n, k) = Sum_{i=k..n} |A008275(n, i)| * |A008297(i, k)|.
E.g.f.: (1-x)^(-y/(1+log(1-x))). - Vladeta Jovovic, Nov 22 2003
EXAMPLE
1; 3,1; 14,9,1; 88,83,18,1; 694,860,275,30,1; 6578,10084,4245,685,45,1; ...
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> add(k!*abs(combinat:-stirling1(n+1, k)), k=0..n+1), 9); # Peter Luschny, Jan 26 2016
MATHEMATICA
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[Function[n, Sum[k!*Abs[StirlingS1[n+1, k]], {k, 0, n+1}]], rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 26 2018, after Peter Luschny *)
CROSSREFS
Cf. A007840 (first column).
Sequence in context: A283402 A283349 A204121 * A079638 A018858 A101820
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Jan 30 2003
STATUS
approved