login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359759
Table read by rows. T(n, k) = (-1)^(n - k) * Sum_{j=k..n} binomial(n, j) * A354794(j, k) * j^(n - j).
1
1, 0, 1, 0, -3, 1, 0, 13, -9, 1, 0, -103, 79, -18, 1, 0, 1241, -905, 265, -30, 1, 0, -19691, 13771, -4290, 665, -45, 1, 0, 384805, -262885, 82621, -14630, 1400, -63, 1, 0, -8918351, 6007247, -1888362, 353381, -40390, 2618, -84, 1
OFFSET
0,5
COMMENTS
Inspired by a formula of Mélika Tebni in A048993.
FORMULA
E.g.f. of column k: (exp(LambertW(x*exp(-x))) - 1)^k / k!. (Note that (exp(-LambertW(-x*exp(-x))) - 1)^k / k! is the e.g.f. of column k of Stirling2.) - Mélika Tebni, Jan 27 2023
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, -3, 1;
[3] 0, 13, -9, 1;
[4] 0, -103, 79, -18, 1;
[5] 0, 1241, -905, 265, -30, 1;
[6] 0, -19691, 13771, -4290, 665, -45, 1;
[7] 0, 384805, -262885, 82621, -14630, 1400, -63, 1;
[8] 0, -8918351, 6007247, -1888362, 353381, -40390, 2618, -84, 1;
[9] 0, 238966705, -159432369, 50110705, -9627702, 1206471, -96138, 4494, -108, 1;
MAPLE
T := (n, k) -> (-1)^(n - k)*add(binomial(n, j) * A354794(j, k) * j^(n - j), j = k..n): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jan 27 2023
STATUS
approved