login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256892
Triangular array read by rows, the matrix product of the unsigned Lah numbers and the Stirling set numbers, T(n,k) for n>=0 and 0<=k<=n.
0
1, 0, 1, 0, 3, 1, 0, 13, 9, 1, 0, 73, 79, 18, 1, 0, 501, 755, 265, 30, 1, 0, 4051, 7981, 3840, 665, 45, 1, 0, 37633, 93135, 57631, 13580, 1400, 63, 1, 0, 394353, 1192591, 911582, 274141, 38290, 2618, 84, 1, 0, 4596553, 16645431, 15285313, 5633922, 999831, 92358, 4494, 108, 1
OFFSET
0,5
COMMENTS
Also the Bell transform of A000262(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016
FORMULA
T(n+1,1) = A000262(n).
T(n+1,n) = A045943(n).
Row sums are A084357.
EXAMPLE
Triangle starts:
1;
0, 1;
0, 3, 1;
0, 13, 9, 1;
0, 73, 79, 18, 1;
0, 501, 755, 265, 30, 1;
0, 4051, 7981, 3840, 665, 45, 1;
MAPLE
# The function BellMatrix is defined in A264428.
BellMatrix(n -> simplify(hypergeom([-n, -n-1], [], 1)), 9); # Peter Luschny, Jan 29 2016
MATHEMATICA
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, HypergeometricPFQ[{-n, -n-1}, {}, 1]], rows = 12];
Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
PROG
def Lah(n, k):
if n == k: return 1
if k<0 or k>n: return 0
return (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1))
matrix(ZZ, 8, Lah) * matrix(ZZ, 8, stirling_number2) # as a square matrix
CROSSREFS
See also A088814 and A088729 for variants based on an (1,1)-offset of the number triangles. See A131222 for the product Lah * Stirling-cycle.
A079640 is an unsigned matrix inverse reduced to an (1,1)-offset.
Sequence in context: A249480 A271704 A307419 * A256893 A359759 A137431
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Luschny, Apr 12 2015
STATUS
approved