login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array read by rows, the matrix product of the unsigned Lah numbers and the Stirling set numbers, T(n,k) for n>=0 and 0<=k<=n.
0

%I #18 Jun 28 2018 08:42:34

%S 1,0,1,0,3,1,0,13,9,1,0,73,79,18,1,0,501,755,265,30,1,0,4051,7981,

%T 3840,665,45,1,0,37633,93135,57631,13580,1400,63,1,0,394353,1192591,

%U 911582,274141,38290,2618,84,1,0,4596553,16645431,15285313,5633922,999831,92358,4494,108,1

%N Triangular array read by rows, the matrix product of the unsigned Lah numbers and the Stirling set numbers, T(n,k) for n>=0 and 0<=k<=n.

%C Also the Bell transform of A000262(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 29 2016

%F T(n+1,1) = A000262(n).

%F T(n+1,n) = A045943(n).

%F Row sums are A084357.

%e Triangle starts:

%e 1;

%e 0, 1;

%e 0, 3, 1;

%e 0, 13, 9, 1;

%e 0, 73, 79, 18, 1;

%e 0, 501, 755, 265, 30, 1;

%e 0, 4051, 7981, 3840, 665, 45, 1;

%p # The function BellMatrix is defined in A264428.

%p BellMatrix(n -> simplify(hypergeom([-n, -n-1], [], 1)), 9); # _Peter Luschny_, Jan 29 2016

%t BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];

%t B = BellMatrix[Function[n, HypergeometricPFQ[{-n, -n-1}, {}, 1]], rows = 12];

%t Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2018, after _Peter Luschny_ *)

%o def Lah(n, k):

%o if n == k: return 1

%o if k<0 or k>n: return 0

%o return (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1))

%o matrix(ZZ, 8, Lah) * matrix(ZZ, 8, stirling_number2) # as a square matrix

%Y See also A088814 and A088729 for variants based on an (1,1)-offset of the number triangles. See A131222 for the product Lah * Stirling-cycle.

%Y A079640 is an unsigned matrix inverse reduced to an (1,1)-offset.

%Y Cf. A000262, A045943, A084357, A088729, A088814.

%K nonn,tabl,easy

%O 0,5

%A _Peter Luschny_, Apr 12 2015