login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f.: exp((-1)^k/k*LambertW(-x)^k)/(k-1)!, k=4.
4

%I #18 Feb 20 2018 09:00:25

%S 1,20,360,6860,143570,3321864,84756000,2372001720,72384192540,

%T 2394775746220,85443353291296,3271908306712500,133893717061821080,

%U 5832748749666611920,269542701201588099840,13172225935626444660144,678788199609330554538000,36790272488566573278647940

%N Expansion of e.g.f.: exp((-1)^k/k*LambertW(-x)^k)/(k-1)!, k=4.

%C a(n) = A243098(n,4)/6. - _Alois P. Heinz_, Aug 19 2014

%H Vincenzo Librandi, <a href="/A060918/b060918.txt">Table of n, a(n) for n = 4..200</a>

%F a(n) = (n-1)!/(k-1)!*Sum_{i=0..floor((n-k)/k)} 1/(i!*k^i)*n^(n-(i+1)*k)/(n-(i+1)*k)!, k=4.

%F a(n) ~ 1/6*exp(1/4)*n^(n-1). - _Vaclav Kotesovec_, Nov 27 2012

%t CoefficientList[Series[E^(1/4*LambertW[-x]^4)/6, {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Nov 27 2012 *)

%o (PARI) x='x+O('x^30); Vec(serlaplace(exp(lambertw(-x)^4/4)/3! - 1/3!)) \\ _G. C. Greubel_, Feb 19 2018

%Y Cf. A057817, A060917, A243098.

%K easy,nonn

%O 4,2

%A _Vladeta Jovovic_, Apr 10 2001