Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jun 28 2023 22:21:42
%S 0,1,20,361,6480,116281,2086580,37442161,671872320,12056259601,
%T 216340800500,3882078149401,69661065888720,1250017107847561,
%U 22430646875367380,402501626648765281,7222598632802407680,129604273763794572961,2325654329115499905620
%N a(n) = (Lucas(6*n) - 2)/16.
%C This is the r = 20 member of the r-family of sequences S_r(n), n >= 1, defined in A092184 where more information can be found.
%H Colin Barker, <a href="/A049683/b049683.txt">Table of n, a(n) for n = 0..750</a>
%H S. Barbero, U. Cerruti, and N. Murru, <a href="http://www.seminariomatematico.polito.it/rendiconti/78-1/BarberoCerrutiMurru.pdf">On polynomial solutions of the Diophantine equation (x + y - 1)^2 = wxy</a>, Rendiconti Sem. Mat. Univ. Pol. Torino (2020) Vol. 78, No. 1, 5-12.
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (19,-19,1).
%F a(n) = (-2 + (9 + 4*sqrt(5))^n + (9 - 4*sqrt(5))^n)/16. - _Ralf Stephan_, Apr 14 2004
%F a(n) = (T(n, 9) - 1)/8 with Chebyshev's polynomials of the first kind evaluated at x = 9: T(n, 9) = A023039(n). _Wolfdieter Lang_, Oct 18 2004
%F G.f.: x*(1 + x)/((1 - x)*(1 - 18*x + x^2)) = x*(1 + x)/(1 - 19*x + 19*x^2 - x^3). (from the Stephan link, see A092184).
%F exp( Sum_{n >= 1} 16*a(n)*x^n/n ) = 1 + 2*Sum_{n >= 1} Fibonacci(6*n)*x^n. - _Peter Bala_, Jun 03 2016
%F a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3) for n>2. - _Colin Barker_, Jun 03 2016
%p with(combinat); seq( (5*fibonacci(3*n)^2 -2*(1-(-1)^n))/16, n=0..30); # _G. C. Greubel_, Dec 14 2019
%t LinearRecurrence[{19,-19,1}, {0,1,30}, 20] (* or *) Table[(LucasL[6*n] -2)/16, {n,0,30}] (* _G. C. Greubel_, Dec 02 2017 *)
%o (PARI) concat(0, Vec(x*(1+x)/((1-x)*(1-18*x+x^2)) + O(x^30))) \\ _Colin Barker_, Jun 03 2016
%o (PARI) vector(31, n, (5*fibonacci(3*n-3)^2 -2*(1+(-1)^n))/16 ) \\ _G. C. Greubel_, Dec 14 2019
%o (Magma) [(Lucas(6*n) -2)/16: n in [0..30]]; // _G. C. Greubel_, Dec 02 2017
%o (Sage) [(lucas_number2(6*n,1,-1) -2)/16 for n in (0..30)] # _G. C. Greubel_, Dec 14 2019
%o (GAP) List([0..30], n-> (Lucas(1,-1,6*n)[2] - 2)/16 ); # _G. C. Greubel_, Dec 14 2019
%Y Cf. A000032, A004146, A023039, A049660, A049682, A049684, A092184.
%K nonn,easy
%O 0,3
%A _Clark Kimberling_