The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111216 a(n) = 31*a(n-1)-a(n-2). 3
 1, 30, 929, 28769, 890910, 27589441, 854381761, 26458245150, 819351217889, 25373429509409, 785756963573790, 24333092441278081, 753540108716046721, 23335410277756170270, 722644178501725231649, 22378634123275726010849, 693015013643045781104670 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Take 31 numbers consisting of 29 ones together with any two successive terms from this sequence. This set has the property that the sum of their squares is 31 times their product. (Guy) Positive values of x (or y) satisfying x^2 - 31xy + y^2 + 29 = 0. - Colin Barker, Feb 24 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (31,-1). FORMULA G.f.: (1-x)/(1-31*x+x^2). [Philippe Deléham, Nov 18 2008] a(n) = A200442(n) - A200442(n-1). - R. J. Mathar, Feb 13 2016 MATHEMATICA CoefficientList[Series[(1 - x)/(1 - 31 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *) PROG (PARI) Vec((1-x)/(1-31*x+x^2) + O(x^100)) \\ Colin Barker, Feb 24 2014 (MAGMA) I:=[1, 30]; [n le 2 select I[n] else 31*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 26 2014 CROSSREFS Cf. A049685. Cf. similar sequences listed in A238379. Sequence in context: A041421 A042742 A144350 * A158672 A268948 A276396 Adjacent sequences:  A111213 A111214 A111215 * A111217 A111218 A111219 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, following a suggestion from R. K. Guy, Oct 26 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 8 22:01 EDT 2020. Contains 335537 sequences. (Running on oeis4.)