login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246453 Lucas numbers (A000204) of the form n^2 + 2. 6
3, 11, 18, 123, 843, 5778, 39603, 271443, 1860498, 12752043, 87403803, 599074578, 4106118243, 28143753123, 192900153618, 1322157322203, 9062201101803, 62113250390418, 425730551631123, 2918000611027443, 20000273725560978, 137083915467899403, 939587134549734843 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) = {11} union {A000204(2+4*n)} for n=0,1,...

Intersection of A000204 and A059100. - Michel Marcus, Aug 26 2014

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (7,-1).

FORMULA

From Colin Barker, Jun 20 2017: (Start)

G.f.: x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2).

a(n) = (2^(-n)*((7+3*sqrt(5))^n*(-20+9*sqrt(5)) + (7-3*sqrt(5))^n*(20+9*sqrt(5)))) / sqrt(5) for n>2.

a(n) = 7*a(n-1) - a(n-2) for n>4. (End)

MAPLE

with(combinat, fibonacci):lst:={}:lst1:={}:nn:=5000:

  for n from 1 to nn do:

    lst:=lst union {2*fibonacci(n-1)+fibonacci(n)}:

  od:

   for m from 1 to nn do:

    if {m^2+2} intersect lst = {m^2+2}

    then

    lst1:=lst1 union {m^2+2}:

    else

    fi:

   od:

   print(lst1):

MATHEMATICA

CoefficientList[Series[x*(3-10*x-56*x^2+8*x^3)/(1-7*x+x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{7, -1}, {3, 11, 18, 123}, 30] (* G. C. Greubel, Dec 21 2017 *)

Select[LucasL[Range[100]], IntegerQ[Sqrt[#-2]]&] (* Harvey P. Dale, Dec 31 2018 *)

PROG

(PARI) lista(nn) = for (n=0, nn, luc = fibonacci(n+1) + fibonacci(n-1); if (issquare(luc-2), print1(luc, ", "))); \\ Michel Marcus, Mar 29 2016

(PARI) Vec(x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017

(MAGMA) I:=[3, 11, 18, 123]; [n le 4 select I[n] else 7*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2017

CROSSREFS

Cf. A000204 (Lucas), A059100 (n^2+2).

Cf. quadrisection of A000032: A056854 (first), A056914 (second), this sequence (third, without 11), A288913 (fourth).

Sequence in context: A225144 A335135 A228470 * A117769 A252802 A030377

Adjacent sequences:  A246450 A246451 A246452 * A246454 A246455 A246456

KEYWORD

nonn,easy

AUTHOR

Michel Lagneau, Aug 26 2014

EXTENSIONS

Corrected by Michel Marcus, Mar 29 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 02:14 EST 2021. Contains 349445 sequences. (Running on oeis4.)