login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335135
Number of composite numbers between prime(n)^2 and prime(n + 1)^2 - 1.
1
3, 11, 18, 57, 39, 98, 61, 141, 265, 104, 351, 268, 148, 314, 520, 594, 208, 678, 486, 258, 806, 573, 918, 1325, 703, 366, 753, 390, 788, 3006, 933, 1443, 503, 2581, 542, 1666, 1734, 1192, 1842, 1917, 644, 3364, 691, 1416, 717, 4457, 4729
OFFSET
1,1
LINKS
FORMULA
a(n) = prime(n + 1)^2 - prime(n)^2 - (pi(prime(n + 1)^2) - pi(prime(n)^2)).
a(n) = A053683(n+1) - A053683(n). - Michel Marcus, Aug 27 2022
EXAMPLE
For n = 1, prime(1) = 2 and prime(2) = 3. So the composite numbers between 2^2 = 4 and 3^2 - 1 = 9 - 1 = 8 are 4, 6, and 8, so a(1) = 3.
MAPLE
f:= proc(n) local p, q;
p:= ithprime(n); q:= nextprime(p);
q^2 - p^2 - numtheory:-pi(q^2)+numtheory:-pi(p^2)
end proc:
map(f, [$1..50]); # Robert Israel, Jun 24 2020
MATHEMATICA
Array[#1 - #2 - (PrimePi@ #1 - PrimePi@ #2) & @@ {Prime[# + 1]^2, Prime[#]^2} &, 47] (* Michael De Vlieger, May 24 2020 *)
PROG
(PARI) forprime(n = 2, 220, s = 0; forcomposite(k = n^2, nextprime(n + 1)^2 - 1, s++); print1(s", "))
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Dimitris Valianatos, May 24 2020
STATUS
approved