Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Aug 27 2022 03:16:04
%S 3,11,18,57,39,98,61,141,265,104,351,268,148,314,520,594,208,678,486,
%T 258,806,573,918,1325,703,366,753,390,788,3006,933,1443,503,2581,542,
%U 1666,1734,1192,1842,1917,644,3364,691,1416,717,4457,4729
%N Number of composite numbers between prime(n)^2 and prime(n + 1)^2 - 1.
%H Robert Israel, <a href="/A335135/b335135.txt">Table of n, a(n) for n = 1..2000</a>
%F a(n) = prime(n + 1)^2 - prime(n)^2 - (pi(prime(n + 1)^2) - pi(prime(n)^2)).
%F a(n) = A053683(n+1) - A053683(n). - _Michel Marcus_, Aug 27 2022
%e For n = 1, prime(1) = 2 and prime(2) = 3. So the composite numbers between 2^2 = 4 and 3^2 - 1 = 9 - 1 = 8 are 4, 6, and 8, so a(1) = 3.
%p f:= proc(n) local p,q;
%p p:= ithprime(n); q:= nextprime(p);
%p q^2 - p^2 - numtheory:-pi(q^2)+numtheory:-pi(p^2)
%p end proc:
%p map(f, [$1..50]); # _Robert Israel_, Jun 24 2020
%t Array[#1 - #2 - (PrimePi@ #1 - PrimePi@ #2) & @@ {Prime[# + 1]^2, Prime[#]^2} &, 47] (* _Michael De Vlieger_, May 24 2020 *)
%o (PARI) forprime(n = 2, 220, s = 0; forcomposite(k = n^2, nextprime(n + 1)^2 - 1, s++); print1(s", "))
%Y Cf. A000040, A002808, A053683.
%K nonn,look
%O 1,1
%A _Dimitris Valianatos_, May 24 2020