login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228470
a(n) = 6*a(n-2) + a(n-4), where a(0) = 3, a(1) = 11, a(2) = 18, a(3) = 68.
4
3, 11, 18, 68, 111, 419, 684, 2582, 4215, 15911, 25974, 98048, 160059, 604199, 986328, 3723242, 6078027, 22943651, 37454490, 141385148, 230804967, 871254539, 1422284292, 5368912382, 8764510719, 33084728831, 54009348606, 203877285368, 332820602355
OFFSET
0,1
COMMENTS
Let d = A228469. Then a(n) is the least k > d(n) such that trace(k/d(n)) consists of the first n terms of 0101010101010101... See A228469.
EXAMPLE
See A228469.
MATHEMATICA
c1 = CoefficientList[Series[(2 + 8 x + x^2 + x^3)/(1 - 6 x^2 - x^4), {x, 0, 40}], x]; c2 = CoefficientList[Series[(3 + 11 x + 2 x^3)/(1 - 6 x^2 - x^4), {x, 0, 40}], x]; pairs = Transpose[CoefficientList[Series[{-((3 + 11 x + 2 x^3)/(-1 + 6 x^2 + x^4)), -((2 + 8 x + x^2 + x^3)/(-1 + 6 x^2 + x^4))}, {x, 0, 20}], x]]; t[{x_, y_, _}] := t[{x, y}]; t[{x_, y_}] := Prepend[If[# > y - #, {y - #, 1}, {#, 0}], y] &[Mod[x, y]]; userIn2[{x_, y_}] := Most[NestWhileList[t, {x, y}, (#[[2]] > 0) &]]; Map[Map[#[[3]] &, Rest[userIn2[#]]] &, pairs] (* Peter J. C. Moses, Aug 20 2013 *)
LinearRecurrence[{0, 6, 0, 1}, {3, 11, 18, 68}, 30] (* T. D. Noe, Aug 23 2013 *)
CROSSREFS
Cf. A228469.
Sequence in context: A303520 A225144 A335135 * A246453 A117769 A252802
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 22 2013
STATUS
approved