Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 08 2022 08:46:09
%S 3,11,18,123,843,5778,39603,271443,1860498,12752043,87403803,
%T 599074578,4106118243,28143753123,192900153618,1322157322203,
%U 9062201101803,62113250390418,425730551631123,2918000611027443,20000273725560978,137083915467899403,939587134549734843
%N Lucas numbers (A000204) of the form n^2 + 2.
%C a(n) = {11} union {A000204(2+4*n)} for n=0,1,...
%C Intersection of A000204 and A059100. - _Michel Marcus_, Aug 26 2014
%H Colin Barker, <a href="/A246453/b246453.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-1).
%F From _Colin Barker_, Jun 20 2017: (Start)
%F G.f.: x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2).
%F a(n) = (2^(-n)*((7+3*sqrt(5))^n*(-20+9*sqrt(5)) + (7-3*sqrt(5))^n*(20+9*sqrt(5)))) / sqrt(5) for n>2.
%F a(n) = 7*a(n-1) - a(n-2) for n>4. (End)
%p with(combinat,fibonacci):lst:={}:lst1:={}:nn:=5000:
%p for n from 1 to nn do:
%p lst:=lst union {2*fibonacci(n-1)+fibonacci(n)}:
%p od:
%p for m from 1 to nn do:
%p if {m^2+2} intersect lst = {m^2+2}
%p then
%p lst1:=lst1 union {m^2+2}:
%p else
%p fi:
%p od:
%p print(lst1):
%t CoefficientList[Series[x*(3-10*x-56*x^2+8*x^3)/(1-7*x+x^2), {x,0,50}], x] (* or *) LinearRecurrence[{7,-1}, {3, 11, 18, 123}, 30] (* _G. C. Greubel_, Dec 21 2017 *)
%t Select[LucasL[Range[100]],IntegerQ[Sqrt[#-2]]&] (* _Harvey P. Dale_, Dec 31 2018 *)
%o (PARI) lista(nn) = for (n=0, nn, luc = fibonacci(n+1) + fibonacci(n-1); if (issquare(luc-2), print1(luc, ", "))); \\ _Michel Marcus_, Mar 29 2016
%o (PARI) Vec(x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2) + O(x^30)) \\ _Colin Barker_, Jun 20 2017
%o (Magma) I:=[3,11,18,123]; [n le 4 select I[n] else 7*Self(n-1)-Self(n-2): n in [1..30]]; // _G. C. Greubel_, Dec 21 2017
%Y Cf. A000204 (Lucas), A059100 (n^2+2).
%Y Cf. quadrisection of A000032: A056854 (first), A056914 (second), this sequence (third, without 11), A288913 (fourth).
%K nonn,easy
%O 1,1
%A _Michel Lagneau_, Aug 26 2014
%E Corrected by _Michel Marcus_, Mar 29 2016