login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288914
a(1) = 2; a(n) = a(floor(n/a(n-1))) + 1 for n > 1.
3
2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 5, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
OFFSET
1,1
COMMENTS
Least values of k such that a(k) = n are 1, 2, 6, 24, 120, 720, 5040, ... (n > 1).
These appear to be (n-1)!. Verified for 2 <= n <= 11. - Robert Israel, Jun 22 2017
LINKS
MAPLE
f:= proc(n) option remember;
procname(floor(n/procname(n-1)))+1
end proc:
f(1):= 2:
map(f, [$1..200]); # Robert Israel, Jun 22 2017
MATHEMATICA
a = {2}; Do[AppendTo[a, a[[Floor[n/a[[n - 1]] ] ]] + 1], {n, 2, 105}]; a (* Michael De Vlieger, Jun 21 2017 *)
PROG
(PARI) q=vector(10000); q[1]=2; for(n=2, #q, q[n] = q[n\q[n-1]]+1); q
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Jun 19 2017
STATUS
approved