login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 2; a(n) = a(floor(n/a(n-1))) + 1 for n > 1.
3

%I #16 Jun 23 2017 00:59:20

%S 2,3,3,3,3,4,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,4,5,4,4,4,4,4,5,5,5,

%T 4,5,4,5,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,

%U 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5

%N a(1) = 2; a(n) = a(floor(n/a(n-1))) + 1 for n > 1.

%C Least values of k such that a(k) = n are 1, 2, 6, 24, 120, 720, 5040, ... (n > 1).

%C These appear to be (n-1)!. Verified for 2 <= n <= 11. - _Robert Israel_, Jun 22 2017

%H Robert Israel, <a href="/A288914/b288914.txt">Table of n, a(n) for n = 1..10000</a>

%p f:= proc(n) option remember;

%p procname(floor(n/procname(n-1)))+1

%p end proc:

%p f(1):= 2:

%p map(f, [$1..200]);# _Robert Israel_, Jun 22 2017

%t a = {2}; Do[AppendTo[a, a[[Floor[n/a[[n - 1]] ] ]] + 1], {n, 2, 105}]; a (* _Michael De Vlieger_, Jun 21 2017 *)

%o (PARI) q=vector(10000); q[1]=2; for(n=2, #q, q[n] = q[n\q[n-1]]+1); q

%Y Cf. A000142, A002024, A130147.

%K nonn,easy

%O 1,1

%A _Altug Alkan_, Jun 19 2017