login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253560
Multiply n by its largest prime factor: a(n) = A006530(n) * n.
19
1, 4, 9, 8, 25, 18, 49, 16, 27, 50, 121, 36, 169, 98, 75, 32, 289, 54, 361, 100, 147, 242, 529, 72, 125, 338, 81, 196, 841, 150, 961, 64, 363, 578, 245, 108, 1369, 722, 507, 200, 1681, 294, 1849, 484, 225, 1058, 2209, 144, 343, 250, 867, 676, 2809, 162, 605, 392, 1083, 1682, 3481, 300, 3721, 1922, 441
OFFSET
1,2
LINKS
FORMULA
a(1) = 1; for n > 1, a(n) = A006530(n) * n = A000040(A061395(n)) * n.
Other identities:
a(n) >= A253550(n) for all n >= 1.
a(n) = A129598(n) for all n >= 2.
A052126(a(n)) = n. [A052126 works as an inverse function for this injection.]
MAPLE
A253560 := proc(n)
n*A006530(n) # code re-use
end proc:
seq( A253560(n), n=1..80) ; # R. J. Mathar, Jun 27 2024
MATHEMATICA
a[n_] := n FactorInteger[n][[-1, 1]];
Array[a, 100] (* Jean-François Alcover, Feb 15 2021 *)
PROG
(Scheme) (define (A253560 n) (* (A006530 n) n))
(PARI) a(n) = if (n==1, 1, n*vecmax(factor(n)[, 1])); \\ Michel Marcus, Feb 15 2021
CROSSREFS
Essentially the same as A129598, except that here we have a(1) = 1.
Cf. A070003 (same sequence without 1, sorted into ascending order).
Differs from A072995 for the first time at n=15, where a(15) = 75, while A072995(15) = 225.
Sequence in context: A280286 A268597 A373319 * A050399 A072995 A354165
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 03 2015
STATUS
approved