login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253559
a(1) = 0; for n>1: a(n) = A253557(n) - 1.
7
0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 2, 2, 1, 0, 3, 1, 1, 1, 2, 0, 2, 0, 4, 2, 1, 1, 3, 0, 1, 1, 3, 0, 3, 0, 2, 3, 1, 0, 4, 1, 2, 2, 2, 0, 2, 2, 3, 2, 1, 0, 3, 0, 1, 1, 5, 1, 3, 0, 2, 3, 2, 0, 4, 0, 1, 1, 2, 1, 2, 0, 4, 2, 1, 0, 4, 2, 1, 2, 3, 0, 4, 2, 2, 4, 1, 1, 5, 0, 2, 1, 3, 0, 3, 0, 3, 3, 1, 0, 3, 0, 3, 1, 4, 0, 3, 3, 2, 3, 1, 1, 4, 1, 1, 3, 2, 2, 2, 0, 6
OFFSET
1,8
COMMENTS
Consider the binary trees illustrated in A252753 and A252755: If we start from any n, computing successive iterations of A253554 until 1 is reached (i.e., we are traversing level by level towards the root of the tree, starting from that vertex of the tree where n is located), a(n) gives the number of even numbers > 2 encountered on the path (i.e., excluding the 2 from the count but including the starting n if it was even).
LINKS
FORMULA
a(n) = A080791(A252756(n)). [Number of nonleading 0-bits in A252756(n).]
a(1) = 0; for n>1: a(n) = A253557(n) - 1.
Other identities. For all n >= 2:
a(n) = A000120(A252754(n)) - 1. [One less than the binary weight of A252754(n).]
a(n) = A253555(n) - A253558(n).
PROG
(Scheme) (define (A253559 n) (if (= 1 n) 0 (+ -1 (A253557 n))))
CROSSREFS
Essentially, one less than A253557.
A008578 gives the positions of zeros.
Differs from A252736 for the first time at n=21, where a(21) = 2, while A252736(21) = 1.
Sequence in context: A378662 A252736 A351416 * A136167 A140748 A185305
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 12 2015
STATUS
approved