login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050430
Length of longest palindromic subword of (n base 2).
14
1, 1, 2, 2, 3, 2, 3, 3, 4, 3, 3, 2, 3, 3, 4, 4, 5, 4, 4, 3, 5, 4, 3, 3, 4, 3, 5, 3, 3, 4, 5, 5, 6, 5, 5, 5, 4, 4, 4, 3, 4, 5, 5, 4, 6, 5, 4, 4, 5, 4, 6, 3, 5, 5, 5, 3, 4, 3, 5, 4, 4, 5, 6, 6, 7, 6, 6, 5, 5, 5, 5, 5, 7, 5, 4, 6, 4, 5, 4, 4, 5, 6, 4, 5, 7, 5, 5, 4, 4, 6, 6, 5, 7, 6, 5, 5, 6, 5, 7, 5, 4, 6, 6, 3, 4
OFFSET
1,3
COMMENTS
a(A083318(n-1)) = n; a(A193159(k)) = 3, 1 <= k <= 26. [Reinhard Zumkeller, Jul 17 2011]
FORMULA
a(n) <= min(a(2*n), a(2*n+1)). [Reinhard Zumkeller, Jul 31 2011]
EXAMPLE
(11 base 2) = 1011, containing the palindrome 101, therefore a(11) = 3.
MAPLE
# A050430 Length of longest palindromic factor of n for n in [M1..M2] - from N. J. A. Sloane, Aug 07 2012, revised Aug 11 2012
isPal := proc(L)
local d ;
for d from 1 to nops(L)/2 do
if op(d, L) <> op(-d, L) then
return false;
end if;
end do:
return true;
end proc:
# start of main program
ans:=[];
M1:=0; M2:=64;
for n from M1 to M2 do
t1:=convert(n, base, 2);
rec:=0:
l1:=nops(t1);
for j1 from 0 to l1-1 do
for j2 from j1+1 to l1 do
F1 := [op(j1+1..j2, t1)];
if (isPal(F1) and j2-j1>rec) then rec:=j2-j1; fi;
od:
od:
ans:=[op(ans), rec]:
od:
ans;
MATHEMATICA
f[n_] := Block[{id = IntegerDigits[n, 2]}, k = Length@ id; While[ Union[# == Reverse@# & /@ Partition[id, k, 1]][[-1]] != True, k--]; k]; Array[f, 105] (* Robert G. Wilson v, Jul 16 2011 *)
PROG
(Haskell)
import Data.Char (intToDigit, digitToInt)
import Numeric (showIntAtBase)
a050430 n = a050430_list !! (n-1)
a050430_list = f 1 where
f n = g (showIntAtBase 2 intToDigit n "") : f (n+1)
g zs | zs == reverse zs = length zs
| otherwise = max (h $ init zs) (h $ tail zs)
h zs@('0':_) = g zs
h zs@('1':_) = a050430 $ foldl (\v d -> digitToInt d + 2*v) 0 zs
-- Reinhard Zumkeller, Jul 16 2011
CROSSREFS
Cf. A007088; A050431 (base 3), A050432 (base 4), A050433 (base 5).
Sequence in context: A129843 A349043 A330036 * A277329 A071330 A374758
KEYWORD
nonn,base
EXTENSIONS
Extended by Ray Chandler, Mar 11 2010
STATUS
approved