This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286235 Triangular table T(n,k) = P(phi(k), floor(n/k)), where P is sequence A000027 used as a pairing function N x N -> N, and phi is Euler totient function, A000010. Table is read by rows as T(1,1), T(2,1), T(2,2), etc. 4
 1, 2, 1, 4, 1, 3, 7, 2, 3, 3, 11, 2, 3, 3, 10, 16, 4, 5, 3, 10, 3, 22, 4, 5, 3, 10, 3, 21, 29, 7, 5, 5, 10, 3, 21, 10, 37, 7, 8, 5, 10, 3, 21, 10, 21, 46, 11, 8, 5, 14, 3, 21, 10, 21, 10, 56, 11, 8, 5, 14, 3, 21, 10, 21, 10, 55, 67, 16, 12, 8, 14, 5, 21, 10, 21, 10, 55, 10, 79, 16, 12, 8, 14, 5, 21, 10, 21, 10, 55, 10, 78, 92, 22, 12, 8, 14, 5, 27, 10, 21, 10, 55, 10, 78, 21 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equally: square array A(n,k) = P(A000010(n), floor((n+k-1)/n)), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), etc. Here P is a two-argument form of sequence A000027 used as a pairing function N x N -> N. LINKS MathWorld, Pairing Function FORMULA As a triangle (with n >= 1, 1 <= k <= n): T(n,k) = (1/2)*(2 + ((A000010(k)+floor(n/k))^2) - A000010(k) - 3*floor(n/k)). EXAMPLE The first fifteen rows of the triangle:     1,     2,  1,     4,  1,  3,     7,  2,  3, 3,    11,  2,  3, 3, 10,    16,  4,  5, 3, 10, 3,    22,  4,  5, 3, 10, 3, 21,    29,  7,  5, 5, 10, 3, 21, 10,    37,  7,  8, 5, 10, 3, 21, 10, 21,    46, 11,  8, 5, 14, 3, 21, 10, 21, 10,    56, 11,  8, 5, 14, 3, 21, 10, 21, 10, 55,    67, 16, 12, 8, 14, 5, 21, 10, 21, 10, 55, 10,    79, 16, 12, 8, 14, 5, 21, 10, 21, 10, 55, 10, 78,    92, 22, 12, 8, 14, 5, 27, 10, 21, 10, 55, 10, 78, 21,   106, 22, 17, 8, 19, 5, 27, 10, 21, 10, 55, 10, 78, 21, 36 MATHEMATICA Map[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ # & /@ # &, Table[{EulerPhi@ k, Floor[n/k]}, {n, 14}, {k, n}]] // Flatten (* Michael De Vlieger, May 06 2017 *) PROG (Scheme) (define (A286235 n) (A286235bi (A002260 n) (A004736 n))) (define (A286235bi row col) (let ((a (A000010 row)) (b (quotient (+ row col -1) row))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2)))) (Python) from sympy import totient def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 def t(n, k): return T(totient(k), int(n/k)) for n in xrange(1, 21): print [t(n, k) for k in xrange(1, n + 1)] # Indranil Ghosh, May 11 2017 CROSSREFS Transpose: A286234. Cf. A000010, A000027, A286156, A286245. Cf. A286237 (same triangle but with zeros in positions where k does not divide n). Sequence in context: A078072 A306944 A049776 * A180339 A079276 A210445 Adjacent sequences:  A286232 A286233 A286234 * A286236 A286237 A286238 KEYWORD nonn,tabl AUTHOR Antti Karttunen, May 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 15:51 EDT 2019. Contains 328101 sequences. (Running on oeis4.)