login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210446
Largest integer which is both the product of two integers summing to n+1 and the product of two integers summing to n-1.
0
0, 0, 0, 0, 0, 6, 0, 0, 16, 18, 0, 30, 0, 36, 48, 0, 0, 70, 0, 90, 96, 90, 0, 126, 144, 126, 160, 180, 0, 210, 0, 0, 240, 216, 288, 300, 0, 270, 336, 378, 0, 420, 0, 450, 480, 396, 0, 510, 576, 594, 576, 630, 0, 700, 720, 756, 720, 630, 0, 858, 0, 720, 960, 0
OFFSET
1,6
COMMENTS
a(n) is also the difference between ((n+1)/2)^2 and Q, where Q is the smallest square which exceeds n by a square q (or by 0 if n itself is a square): ((n+1) / 2)^2 - a(n) = Q; Q - n = q; (Q, q squares of an integer if n is odd).
If n is an odd nonprime > 1, a(n)/16 is the product of two triangular numbers (see A085780).
If n is 1, a prime or a power of 2, a(n) = 0.
FORMULA
a(n) = (f1^2 - 1)*(f2^2 - 1)/4 (with f1 and f2 the nearest integers such that f1*f2 = n).
EXAMPLE
a(15) = 48 because 6*8 = 12*4 = 48 and 6 + 8 = 15 - 1; 12 + 4 = 15 + 1.
a(45) = 480 because 20*24 = 16*30 = 480 and 20 + 24 = 45 - 1; 16 + 30 = 45 + 1.
(Also 448 = 28*16 = 14*32, but 480 is larger.)
MATHEMATICA
a[n_] := Module[{x, y, p}, Max[p /. List@ToRules@Reduce[p == x*(n-1-x) == y*(n+1-y), {x, y, p}, Integers]]]; Table[a[n], {n, 100}] (* Giovanni Resta, Jan 22 2013 *)
PROG
(PARI) a(n) = {my(x=vector(n\2), y=vector(n\2)); for(k=1, n\2, x[k]=k*(n-1-k); y[k]=k*(n+1-k)); v=setintersect(x, y); if(#v>0, v[#v], 0); } \\ Jinyuan Wang, Oct 13 2019
CROSSREFS
Cf. A085780.
Sequence in context: A263850 A341797 A340905 * A002044 A230968 A028700
KEYWORD
nonn
AUTHOR
STATUS
approved