Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jun 09 2024 09:05:25
%S 1,1,2,1,4,1,4,1,8,1,8,8,1,1,1,16,16,1,1,16,1,1,1,1,32,1,32,1,1,32,32,
%T 1,1,1,1,1,1,64,1,1,1,1,1,64,1,64,1,64,1,1,1,1,1,1,1,1,1,1,1,1,128,1,
%U 1,1,1,1,128,1,1,1,1,1,128,1,128,128,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N Values of cototient function for A053577.
%C Except for 2^0 = 1, there are only finitely many values of k such that cototient(k) = 2^m for fixed m.
%H Amiram Eldar, <a href="/A053578/b053578.txt">Table of n, a(n) for n = 1..10000</a>
%e For p prime, cototient(p) = 1. Smallest values for which cototient(x) = 2^w are A058764(w) = A007283(w-1) = 3*2^(w-1) = 6, 12, 24, 48, 96, 192, .., 49152 for w = 2, 3, 4, 5, 6, ..., 15. [Corrected by _M. F. Hasler_, Nov 10 2016]
%t Select[Table[k - EulerPhi[k], {k, 1, 400}], # == 2^IntegerExponent[#, 2] &] (* _Amiram Eldar_, Jun 09 2024 *)
%o (PARI) lista(kmax) = {my(c); for(k = 2, kmax, c = k - eulerphi(k); if(c >> valuation(c, 2) == 1, print1(c, ", ")));} \\ _Amiram Eldar_, Jun 09 2024
%Y Cf. A051953, A053577, A058764, A007283.
%K nonn
%O 1,3
%A _Labos Elemer_, Jan 18 2000
%E Edited and corrected by _M. F. Hasler_, Nov 10 2016