Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 31 2015 17:00:35
%S 1,1,1,2,1,4,1,4,2,4,1,8,1,4,4,6,1,8,1,8,4,4,1,21,2,4,4,8,1,27,1,8,4,
%T 4,4,25,1,4,4,21,1,27,1,8,8,4,1,33,2,8,4,8,1,21,4,21,4,4,1,112,1,4,8,
%U 11,4,27,1,8,4,27,1,70,1,4,8,8,4,27,1,33
%N Number of squares that divide the product of divisors of n.
%H Giovanni Resta, <a href="/A216864/b216864.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A046951(A007955(n)).
%F a(n) = Product_{i=1..k} (1+floor(M*e_i/4)), for n>1, where the prime factorization of n is p_1^e_1*...*p_k^e_k and M = Product_{i=1..k}(1+e_i). - _Giovanni Resta_, May 31 2015
%e For n=28, the divisors are 1, 2, 4, 7, 14, 28. The product of these is 2^6*7^3. The sequence entry a(28) = 8 counts the squares 1, 7^2, 2^2, 2^2*7^2, 2^4, 2^4*7^2, 2^6 and 2^6*7^2, all of which divide 2^6*7^3.
%p A216864 := proc(n)
%p A046951(A007955(n)) ;
%p end proc:
%p seq(A216864(n),n=1..80) ; # _R. J. Mathar_, Sep 18 2012
%t Table[Length[Select[Divisors[Times @@ Divisors[n]], IntegerQ[Sqrt[#]] &]], {n, 100}] (* _T. D. Noe_, Sep 18 2012 *)
%t a[n_] := Block[{e = Last /@ FactorInteger[n]}, Times @@ (1 + Floor[e * Times @@ (1 + e)/4])]; Array[a, 1000] (* _Giovanni Resta_, May 31 2015 *)
%o (PARI) a(n) = {my(d = divisors(n)); my(pd = prod(k=1, #d, d[k])); sumdiv(pd, dd, issquare(dd));} \\ _Michel Marcus_, May 31 2015
%Y Cf. A216677.
%K nonn
%O 1,4
%A _R. J. Mathar_, Sep 18 2012