Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Feb 19 2024 16:49:25
%S 1,1,1,2,1,4,1,4,2,4,1,20,1,4,4,8,1,20,1,20,4,4,1,88,2,4,4,20,1,96,1,
%T 16,4,4,4,196,1,4,4,88,1,96,1,20,20,4,1,368,2,20,4,20,1,88,4,88,4,4,1,
%U 1824,1,4,20,32,4,96,1,20,4,96,1,1688,1,4,20,20,4,96,1,368,8,4,1,1824,4,4,4,88,1,1824,4,20
%N Number of finite connected sets of positive integers greater than one with least common multiple n.
%C Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that are not relatively prime. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.
%C a(n) depends only on prime signature of n (cf. A025487). - _Antti Karttunen_, Feb 17 2024
%H Antti Karttunen, <a href="/A286518/b286518.txt">Table of n, a(n) for n = 1..719</a>
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F From _Antti Karttunen_, Feb 17 2024: (Start)
%F a(n) <= A069626(n).
%F It seems that a(n) >= A318670(n), for all n > 1.
%F (End)
%e The a(6)=4 sets are: {6}, {2,6}, {3,6}, {2,3,6}.
%t zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
%t Table[Length[Select[Subsets[Rest[Divisors[n]]],zsm[#]==={n}&]],{n,2,20}]
%o (PARI)
%o isconnected(facs) = { my(siz=length(facs)); if(1==siz,1,my(m=matrix(siz,siz,i,j,(gcd(facs[i],facs[j])!=1))^siz); for(n=1,siz,if(0==vecmin(m[n,]),return(0))); (1)); };
%o A286518aux(n, parts, from=1, ss=List([])) = { my(k = #parts, s=0, newss); if(lcm(Vec(ss))==n && isconnected(ss), s++); for(i=from, k, newss = List(ss); listput(newss, parts[i]); s += A286518aux(n, parts, i+1, newss)); (s) };
%o A286518(n) = if(1==n, n, A286518aux(n, divisors(n))); \\ _Antti Karttunen_, Feb 17 2024
%Y Cf. A048143, A054921, A069626, A076078, A259936, A281116, A285572, A285573, A286520, A305193, A318670.
%K nonn
%O 1,4
%A _Gus Wiseman_, Jul 24 2017
%E Term a(1)=1 prepended and more terms added by _Antti Karttunen_, Feb 17 2024