login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304118 Number of z-blobs with least common multiple n > 1. 22

%I #15 May 26 2018 17:38:06

%S 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,

%T 1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,1,2,1,1,

%U 1,2,1,3,1,1,1,1,1,2,1,1,1,1,1,7,1,1,1,1

%N Number of z-blobs with least common multiple n > 1.

%C Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-blob is a finite connected set S of pairwise indivisible positive integers greater than 1 such that no cap of S with at least two edges has clutter density -1.

%C If n is squarefree with k prime factors, then a(n) = A275307(k).

%H Gus Wiseman, <a href="http://www.mathematica-journal.com/2017/12/every-clutter-is-a-tree-of-blobs/">Every Clutter Is a Tree of Blobs</a>, The Mathematica Journal, Vol. 19, 2017.

%e The a(60) = 7 z-blobs together with the corresponding multiset systems (see A112798, A302242) are the following.

%e (60): {{1,1,2,3}}

%e (12,30): {{1,1,2},{1,2,3}}

%e (20,30): {{1,1,3},{1,2,3}}

%e (6,15,20): {{1,2},{2,3},{1,1,3}}

%e (10,12,15): {{1,3},{1,1,2},{2,3}}

%e (12,15,20): {{1,1,2},{2,3},{1,1,3}}

%e (12,20,30): {{1,1,2},{1,1,3},{1,2,3}}

%e The a(120) = 14 z-blobs together with the corresponding multiset systems are the following.

%e (120): {{1,1,1,2,3}}

%e (24,30): {{1,1,1,2},{1,2,3}}

%e (24,60): {{1,1,1,2},{1,1,2,3}}

%e (30,40): {{1,2,3},{1,1,1,3}}

%e (40,60): {{1,1,1,3},{1,1,2,3}}

%e (6,15,40): {{1,2},{2,3},{1,1,1,3}}

%e (10,15,24): {{1,3},{2,3},{1,1,1,2}}

%e (12,15,40): {{1,1,2},{2,3},{1,1,1,3}}

%e (12,30,40): {{1,1,2},{1,2,3},{1,1,1,3}}

%e (15,20,24): {{2,3},{1,1,3},{1,1,1,2}}

%e (15,24,40): {{2,3},{1,1,1,2},{1,1,1,3}}

%e (20,24,30): {{1,1,3},{1,1,1,2},{1,2,3}}

%e (24,30,40): {{1,1,1,2},{1,2,3},{1,1,1,3}}

%e (24,40,60): {{1,1,1,2},{1,1,1,3},{1,1,2,3}}

%t zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];

%t zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];

%t zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1];

%t zlobQ[s_]:=Apply[And,Composition[Not,zreeQ]/@Apply[LCM,zptns[s],{2}]];

%t zswell[s_]:=Union[LCM@@@Select[Subsets[s],Length[zsm[#]]==1&]];

%t zkernels[s_]:=Table[Select[s,Divisible[w,#]&],{w,zswell[s]}];

%t zptns[s_]:=Select[stableSets[zkernels[s],Length[Intersection[#1,#2]]>0&],Union@@#==s&];

%t stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];

%t Table[If[n==1,0,Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={},zlobQ[#]]&]]],{n,100}]

%Y Cf. A006126, A030019, A048143, A076078, A112798, A134954, A275307, A285572, A286518, A286520, A293993, A293994, A302242, A303837, A303838.

%K nonn

%O 1,30

%A _Gus Wiseman_, May 19 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 14:54 EDT 2024. Contains 371960 sequences. (Running on oeis4.)