login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363522
Number of integers k such that there are exactly n distinct numbers j with k^2 < j < (k+1)^2 which can be expressed as sum of two squares.
3
1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2, 1, 1, 3, 2, 2, 1, 3, 3, 1, 3, 1, 2, 1, 4, 2, 1, 3, 1, 3, 1, 3, 1, 4, 1, 3, 2, 1, 1, 4, 1, 4, 2, 3, 0, 2, 3, 3, 3, 2, 2, 2, 1, 0, 3, 5, 1, 4, 1, 4, 0, 2, 2, 3, 4, 1, 1, 3, 3, 0, 5, 1, 4, 1, 2, 1, 3, 4, 0, 3, 3, 2, 2, 4, 0, 3
OFFSET
0,3
COMMENTS
Number of occurrences of n in A077773.
LINKS
EXAMPLE
a(0) = 1, since A077773(k) = 0 at the single index k = 0.
a(6) = 3, since A077773(k) = 6 for these 3 indices: k = 8, 9, and 11.
a(46) = 0, since A077773 doesn't contain 46; see A363761, A363762 and A363763.
PROG
(Python)
from sympy import factorint
def A363522(n):
s = 0
for k in range(n>>1, ((n+1)**2<<1)+1):
c = 0
for m in range(k**2+1, (k+1)**2):
if all(p==2 or p&3==1 or e&1^1 for p, e in factorint(m).items()):
c += 1
if c>n:
break
if c==n:
s += 1
return s # Chai Wah Wu, Jul 10 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Rainer Rosenthal, Jul 07 2023
STATUS
approved