login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363519
Number T(n,k) of partitions of [n] having exactly k parity changes within the partition, n>=0, 0<=k<=max(0,n-1), read by rows.
5
1, 1, 0, 2, 0, 1, 4, 0, 3, 4, 8, 0, 2, 18, 14, 18, 0, 7, 27, 87, 42, 40, 0, 5, 102, 162, 360, 147, 101, 0, 20, 179, 866, 931, 1456, 434, 254, 0, 15, 675, 1746, 5836, 4755, 5778, 1619, 723, 0, 67, 1321, 9087, 16416, 36031, 22893, 23052, 5044, 2064, 0, 52, 5216, 19863, 93452, 117172, 206570, 115178, 94210, 20271, 6586
OFFSET
0,4
COMMENTS
The blocks are ordered with increasing least elements.
LINKS
FORMULA
Sum_{k=0..max(0,n-1)} k * T(n,k) = A363549(n).
EXAMPLE
T(4,1) = 3: 134|2, 13|24, 13|2|4.
T(4,2) = 4: 124|3, 14|23, 14|2|3, 1|24|3.
T(4,3) = 8: 1234, 123|4, 12|34, 12|3|4, 1|234, 1|23|4, 1|2|34, 1|2|3|4.
T(5,2) = 18: 1245|3, 124|35, 124|3|5, 134|25, 134|2|5, 13|245, 13|24|5, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 14|25|3, 14|2|35, 14|2|3|5, 15|24|3, 1|245|3, 1|24|35, 1|24|3|5.
T(5,4) = 18: 12345, 1234|5, 123|45, 123|4|5, 12|345, 12|34|5, 12|3|45, 12|3|4|5, 145|23, 1|2345, 1|234|5, 1|23|45, 1|23|4|5, 145|2|3, 1|2|345, 1|2|34|5, 1|2|3|45, 1|2|3|4|5.
Triangle T(n,k) begins:
1;
1;
0, 2;
0, 1, 4;
0, 3, 4, 8;
0, 2, 18, 14, 18;
0, 7, 27, 87, 42, 40;
0, 5, 102, 162, 360, 147, 101;
0, 20, 179, 866, 931, 1456, 434, 254;
0, 15, 675, 1746, 5836, 4755, 5778, 1619, 723;
0, 67, 1321, 9087, 16416, 36031, 22893, 23052, 5044, 2064;
...
MAPLE
b:= proc(l, i, t) option remember; expand(`if`(l=[], 1,
add((f-> b(subsop(j=[][], l), j, `if`(f, 1-t, t))*
`if`(f, x, 1))(l[j]=t), j=[1, $i..nops(l)])))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
b([ seq(irem(i, 2), i=2..n)], 1, 0)):
seq(T(n), n=0..12);
MATHEMATICA
b[l_, i_, t_] := b[l, i, t] = Expand[If[l == {}, 1, Sum[Function[f, b[ReplacePart[l, j -> Nothing], j, If[f, 1 - t, t]]*If[f, x, 1]][l[[j]] == t], {j, Join[{1}, Range[i, Length@l]]}]]];
T[n_] := CoefficientList[b[ Table[Mod[i, 2], {i, 2, n}], 1, 0], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 17 2023, after Alois P. Heinz *)
CROSSREFS
Column k=1 gives A363550.
Row sums give A000110.
T(n,max(0,n-1)) gives A274547.
Sequence in context: A081265 A039991 A273821 * A108643 A133838 A182138
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jun 07 2023
STATUS
approved