

A305058


Totients t such that the number of divisors of t equals the number of solutions of phi(x) = t.


2



6, 12, 80, 160, 312, 352, 928, 1760, 1792, 3264, 3960, 7104, 7648, 13680, 15984, 16224, 17760, 19712, 20352, 20800, 21088, 22368, 23184, 25728, 25888, 26240, 27072, 29664, 47952, 57312, 60048, 62976, 67072, 73152, 74368, 77664, 78144, 81568, 85056, 85392, 86688
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For known terms gcd({phi(x) = t}) = 1.
This is not always the case, the smallest counterexample being t=4598784, a term of A303745, which has gcd({phi(x) = t}) = 1997.  Daniel Suteu, Dec 01 2018
Conjecture: Every term divides one or more subsequent terms.
Numbers n for which A000005(n) = A014197(n), positions of zeros in A322019.  Antti Karttunen, Dec 01 2018


LINKS

Daniel Suteu, Table of n, a(n) for n = 1..10000


FORMULA

tau(a(n)) = #{phi(x) = a(n)}.


EXAMPLE

6 is a term because the divisors of 6 are {1,2,3,6} and the solutions of phi(x) = 6 are {7,9,14,18}.
12 is a term because the divisors of 12 are {1,2,3,4,6,12} and the solutions of phi(x) = 12 are {13,21,26,28,36,42}.


MATHEMATICA

A014197[1] = 2; A014197[m_?OddQ] = 0; A014197[m_] := Module[{p, nmax, n, k}, p = Select[ Divisors[m]+1, PrimeQ]; nmax = m*Times @@ (p/(p  1)); n = m; k = 0; While[n <= nmax, If[EulerPhi[n] == m, k++]; n++]; k]; aQ[n_] := (DivisorSigma[0 , n] == A014197[n]); Select[Range[1000], aQ] (* Amiram Eldar, Dec 02 2018 after JeanFrançois Alcover at A014197 *)


PROG

(Perl) use ntheory ':all'; for (1..10**5) { print "$_\n" if inverse_totient($_) == divisor_sum($_, 0) } # Daniel Suteu, Dec 01 2018
(PARI)
A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))}; \\ From A014197
isA305058(n) = (numdiv(n) == A014197(n)); \\ Antti Karttunen, Dec 01 2018


CROSSREFS

Cf. A000005, A000010, A014197, A320000, A322019, A303745.
Sequence in context: A071930 A239854 A061520 * A220232 A196253 A338563
Adjacent sequences: A305055 A305056 A305057 * A305059 A305060 A305061


KEYWORD

nonn


AUTHOR

Torlach Rush, May 24 2018


EXTENSIONS

More terms from Daniel Suteu, Dec 01 2018


STATUS

approved



