login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372180
Square array read by antidiagonals upwards in which T(n,m) is the n-th number whose symmetric representation of sigma consists of m copies of unimodal pattern 121 (separated by 0's if m > 1).
2
6, 12, 78, 20, 102, 1014, 24, 114, 1734, 12246, 28, 138, 2166, 12714, 171366, 40, 174, 3174, 13026, 501126, 1922622, 48, 186, 5046, 13182, 781926, 2057406, 28960854, 56, 222, 5766, 13494, 1679046, 2067546, 144825414, 300014754, 80, 246, 8214, 13962, 4243686, 2072382, 282275286, 300137214, 4174476774
OFFSET
1,1
COMMENTS
Every number in this sequence is even since the symmetric representation of sigma for an odd number q starts 101. Each number in column m of T(n,m) has 2*m odd divisors.
Since u(m) = 2 * 3 * 13^(m-1), m>=1, has 2m odd divisors and 1 < 3 < 4 < 4*3 < 13 < 3*13 < 4*13 < 3*4*13 < 13^2 < ..., the symmetric representation of sigma for u(m) consists of m copies of unimodal pattern 121. Therefore, every column in the table T(n,m), m>=1, contains infinitely many entries. Number u(m) is the smallest entry in the m-th column when m is prime.
In general: If m>1 then T(n,m) = 2^k * q, k>=1, q odd, has at least 4 odd divisors which satisfy
d_(2i+2) < 2^(k+1) * d_(2i+1) < 2^(k+1) * d_(2i+2) < d_(2i+3), i>=0,
with the odd divisors d_j of n in increasing order.
FORMULA
T(n,1) = 2^k * p with odd prime p satisfying p < 2^(k+1), see A370205.
T(n,2) = 2^k * p * q, k > 0, p and q prime, 2 < p < 2^(k+1) < 2^(k+1) * p < q, see A370206.
EXAMPLE
a(1) = T(1,1) = 6, its symmetric representation of sigma, SRS(6), has unimodal pattern 121 and a single unit of width 2 at the diagonal.
a(3) = T(1,2) = 78, SRS(78) has unimodal pattern 1210121;
a(10) = T(1,4) = 12246, SRS(12246) has unimodal pattern 121012101210121;
both symmetric representations of sigma have width 0 at the diagonal where two parts meets.
Each number in the m-th column has 2m odd divisors. T(1,9) = 4174476774.
-------------------------------------------------------------------------
n\m 1 2 3 4 5 6 7 8
-------------------------------------------------------------------------
1| 6 78 1014 12246 171366 1922622 28960854 300014754 ...
2| 12 102 1734 12714 501126 2057406 144825414 300137214 ...
3| 20 114 2166 13026 781926 2067546 282275286 300235182 ...
4| 24 138 3174 13182 1679046 2072382 888215334 300357642 ...
5| 28 174 5046 13494 4243686 2081742 3568939926 300431118 ...
6| 40 186 5766 13962 5541126 2091882 ... 300602562 ...
7| 48 222 8214 14118 8487372 2097966 300651546 ...
8| 56 246 10086 14898 11082252 2110134 300896466 ...
9| 80 258 10092 15054 11244966 2112162 301165878 ...
10| 88 282 11094 15366 16954566 2116218 301386306 ...
...
MATHEMATICA
divQ[k_, {d1_, d2_, d3_}] := d2<2^(k+1)d1&&2^(k+1)d2<d3
seqQ[t_, m_] := Module[{oP, k, dL}, oP=NestWhile[#/2&, t, EvenQ[#]&]; k=Log[2, t/oP]; dL=Divisors[oP]; Length[dL]==2m&&If[Length[dL]==2, Last[dL]<2^(k+1), AllTrue[Partition[dL, 3, 2], divQ[k, #]&]]]
a372180[{r_, s_}, m_] := Select[Range[r, s], seqQ[#, m]&] (* range r...s of numbers in column m *)
a372180[{1, 15366}, 4] (* computes column 4 in the table *)
a372180[{1, 2116218}, 6] (* computes column 6 in the table *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Hartmut F. W. Hoft, Apr 21 2024
STATUS
approved