login
A372183
E.g.f. A(x) satisfies A(x) = exp( x * A(x)^5 / (1 - x * A(x)^2) ).
1
1, 1, 13, 340, 13713, 752516, 52372051, 4421017602, 438996446545, 50142716621848, 6477138263806011, 933667525669154486, 148582199464010331289, 25874197258988478298068, 4894174597530612144797299, 999256176035969437218129946, 219035687330062179838536993441
OFFSET
0,3
FORMULA
If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s ), then a(n) = r * n! * Sum_{k=0..n} (t*k+u*(n-k)+r)^(k-1) * binomial(n+(s-1)*k-1,n-k)/k!.
PROG
(PARI) a(n, r=1, s=1, t=5, u=2) = r*n!*sum(k=0, n, (t*k+u*(n-k)+r)^(k-1)*binomial(n+(s-1)*k-1, n-k)/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 21 2024
STATUS
approved