login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082105
Array A(n, k) = (k*n)^2 + 4*(k*n) + 1, read by antidiagonals.
7
1, 1, 1, 1, 6, 1, 1, 13, 13, 1, 1, 22, 33, 22, 1, 1, 33, 61, 61, 33, 1, 1, 46, 97, 118, 97, 46, 1, 1, 61, 141, 193, 193, 141, 61, 1, 1, 78, 193, 286, 321, 286, 193, 78, 1, 1, 97, 253, 397, 481, 481, 397, 253, 97, 1, 1, 118, 321, 526, 673, 726, 673, 526, 321, 118, 1
OFFSET
0,5
LINKS
FORMULA
A(n, k) = (k*n)^2 + 4*(k*n) + 1 (square array).
A(n, n) = T(2*n, n) = A082106(n) (main diagonal).
T(n, k) = A(n-k, k) (number triangle).
Sum_{k=0..n} T(n, k) = A082107(n) (diagonal sums).
T(n, n-1) = A028872(n-1), n >= 1.
T(n, n-2) = A082109(n-2), n >= 2.
From G. C. Greubel, Dec 22 2022: (Start)
Sum_{k=0..n} (-1)^k * T(n, k) = ((1+(-1)^n)/2)*A016897(n-1).
T(2*n+1, n+1) = A047673(n+1), n >= 0.
T(n, n-k) = T(n, k). (End)
EXAMPLE
Array, A(n, k), begins as:
1, 1, 1, 1, 1, 1, ... A000012;
1, 6, 13, 22, 33, 46, ... A028872;
1, 13, 33, 61, 97, 141, ... A082109;
1, 22, 61, 118, 193, 286, ... ;
1, 33, 97, 193, 321, 481, ... ;
1, 46, 141, 286, 481, 726, ... ;
Triangle, T(n, k), begins as:
1;
1, 1;
1, 6, 1;
1, 13, 13, 1;
1, 22, 33, 22, 1;
1, 33, 61, 61, 33, 1;
1, 46, 97, 118, 97, 46, 1;
1, 61, 141, 193, 193, 141, 61, 1;
1, 78, 193, 286, 321, 286, 193, 78, 1;
MATHEMATICA
T[n_, k_]:= (k*(n-k))^2 + 4*(k*(n-k)) + 1;
Table[T[n, k], {n, 0, 13}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 22 2022 *)
PROG
(Magma) [(k*(n-k))^2 + 4*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 22 2022
(SageMath)
def A082105(n, k): return (k*(n-k))^2 + 4*(k*(n-k)) + 1
flatten([[A082105(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 22 2022
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 03 2003
STATUS
approved