OFFSET
0,2
COMMENTS
4*a(n) can be written as (n^2 + 2*n + 1)^2 + (n^2 - 2*n + 1)^2 + (n^2 - 2*n - 1)^2 + (n^2 + 2*n - 1)^2. - Bruno Berselli, Jun 20 2014
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = n^4 + 4*n^2 + 1.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Dec 06 2012
G.f.: (1 + x + 13*x^2 + 3*x^3 + 6*x^4)/(1 - x)^5. - Bruno Berselli, Jun 20 2014
E.g.f.: (1 + 5*x + 11*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 22 2022
Sum_{n>=0} 1/a(n) = 1/2 + (Pi/4)*((1/sqrt(2)+1/sqrt(6))*coth(sqrt(2-sqrt(3))*Pi) - (1/sqrt(2)-1/sqrt(6))*coth(sqrt(2+sqrt(3))*Pi)). - Amiram Eldar, Jan 08 2023
MATHEMATICA
Table[n^4+4n^2+1, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 6, 33, 118, 321}, 40] (* Harvey P. Dale, Dec 06 2012 *)
PROG
(Magma) [(n^2+2)^2 -3: n in [0..40]]; // G. C. Greubel, Dec 22 2022
(SageMath) [(n^2+2)^2 -3 for n in range(41)] # G. C. Greubel, Dec 22 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 03 2003
STATUS
approved