login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082047
Diagonal sums of number array A082046.
6
1, 2, 7, 24, 69, 170, 371, 736, 1353, 2338, 3839, 6040, 9165, 13482, 19307, 27008, 37009, 49794, 65911, 85976, 110677, 140778, 177123, 220640, 272345, 333346, 404847, 488152, 584669, 695914, 823515, 969216, 1134881, 1322498, 1534183
OFFSET
0,2
FORMULA
a(n) = (n^5+15*n^3+14*n+30)/30 = (n+1)*(n^4-n^3+16*n^2-16*n+30)/30.
From G. C. Greubel, Dec 24 2022: (Start)
G.f.: (1 - 4*x + 10*x^2 - 8*x^3 + 5*x^4)/(1-x)^6.
E.g.f.: (1/30)*(30 +30*x +60*x^2 +40*x^3 +10*x^4 +x^5)*exp(x). (End)
MATHEMATICA
Table[(n+1)*(n*(n-1)*(n^2+16)+30)/30, {n, 0, 40}] (* G. C. Greubel, Dec 24 2022 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 2, 7, 24, 69, 170}, 40] (* Harvey P. Dale, Jan 25 2024 *)
PROG
(PARI) a(n) = (n^5+15*n^3+14*n+30)/30; \\ Michel Marcus, Jan 22 2016
(Magma) [(n+1)*(n*(n-1)*(n^2+16)+30)/30: n in [0..40]]; // G. C. Greubel, Dec 24 2022
(SageMath) [(n+1)*(n*(n-1)*(n^2+16)+30)/30 for n in range(41)] # G. C. Greubel, Dec 24 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 03 2003
STATUS
approved