login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082044
Main diagonal of A082043: a(n) = n^4 + 2*n^2 + 1.
15
1, 4, 25, 100, 289, 676, 1369, 2500, 4225, 6724, 10201, 14884, 21025, 28900, 38809, 51076, 66049, 84100, 105625, 131044, 160801, 195364, 235225, 280900, 332929, 391876, 458329, 532900, 616225, 708964, 811801, 925444, 1050625, 1188100
OFFSET
0,2
COMMENTS
a(n) = longest side b of all integer-sided triangles with sides a <= b <= c and inradius n >= 1. Triangle has sides (n^2+2, n^4+2*n^2+1, n^4+3*n^2+1).
FORMULA
a(n) = n^4 + 2*n^2 + 1.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Feb 27 2015
a(n) = (2*(2* A000217(n-1)^2 +(A002061(n)))^2 / A082044(n-1). - Bruce J. Nicholson, Apr 17 2017
a(n) = A002522(n)^2 = (n^2 + 1)^2 = a(-n) for all n in Z. - Michael Somos, Apr 17 2017
G.f.: (1 - x + 15*x^2 + 5*x^3 + 4*x^4 ) / (1 - x)^5. - Michael Somos, Apr 17 2017
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=0} 1/a(n) = Pi^2*csch(Pi)^2/4 + Pi*coth(Pi)/4 + 1/2.
Sum_{n>=0} (-1)^n/a(n) = Pi^2*csch(Pi)*coth(Pi)/4 + Pi*csch(Pi)/4 + 1/2. (End)
E.g.f.: (1 + 3*x + 9*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 24 2022
EXAMPLE
G.f. = 1 + 4*x + 25*x^2 + 100*x^3 + 289*x^4 + 676*x^5 + 1369*x^6 + ...
MAPLE
seq(fibonacci(3, n)^2, n=0..33); # Zerinvary Lajos, Apr 09 2008
MATHEMATICA
Fibonacci[3, Range[0, 40]]^2 (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 4, 25, 100, 289}, 40] (* Harvey P. Dale, Feb 27 2015 *)
PROG
(PARI) a(n) = n^4+2*n^2+1; \\ Michel Marcus, Jan 22 2016
(Magma) [(n^2+1)^2: n in [0..40]]; // G. C. Greubel, Dec 24 2022
(SageMath) [(n^2+1)^2 for n in range(41)] # G. C. Greubel, Dec 24 2022
CROSSREFS
See A120062 for sequences related to integer-sided triangles with integer inradius n.
Sequence in context: A264167 A152215 A231175 * A167889 A329495 A042651
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 03 2003
STATUS
approved