OFFSET
0,2
COMMENTS
a(n) = longest side b of all integer-sided triangles with sides a <= b <= c and inradius n >= 1. Triangle has sides (n^2+2, n^4+2*n^2+1, n^4+3*n^2+1).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = n^4 + 2*n^2 + 1.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Feb 27 2015
a(n) = A002522(n)^2 = (n^2 + 1)^2 = a(-n) for all n in Z. - Michael Somos, Apr 17 2017
G.f.: (1 - x + 15*x^2 + 5*x^3 + 4*x^4 ) / (1 - x)^5. - Michael Somos, Apr 17 2017
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=0} 1/a(n) = Pi^2*csch(Pi)^2/4 + Pi*coth(Pi)/4 + 1/2.
Sum_{n>=0} (-1)^n/a(n) = Pi^2*csch(Pi)*coth(Pi)/4 + Pi*csch(Pi)/4 + 1/2. (End)
E.g.f.: (1 + 3*x + 9*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 24 2022
EXAMPLE
G.f. = 1 + 4*x + 25*x^2 + 100*x^3 + 289*x^4 + 676*x^5 + 1369*x^6 + ...
MAPLE
seq(fibonacci(3, n)^2, n=0..33); # Zerinvary Lajos, Apr 09 2008
MATHEMATICA
Fibonacci[3, Range[0, 40]]^2 (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 4, 25, 100, 289}, 40] (* Harvey P. Dale, Feb 27 2015 *)
PROG
(PARI) a(n) = n^4+2*n^2+1; \\ Michel Marcus, Jan 22 2016
(Magma) [(n^2+1)^2: n in [0..40]]; // G. C. Greubel, Dec 24 2022
(SageMath) [(n^2+1)^2 for n in range(41)] # G. C. Greubel, Dec 24 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 03 2003
STATUS
approved