login
A167889
a(n) = (-7*3^n+(-3)^n+6*4^n) / 42.
1
0, 0, 1, 4, 25, 100, 481, 1924, 8425, 33700, 141361, 565444, 2320825, 9283300, 37664641, 150658564, 607417225, 2429668900, 9761722321, 39046889284, 156574977625, 626299910500, 2508686426401, 10034745705604, 40170363882025
OFFSET
0,4
COMMENTS
This is the main sequence for the recurrence a(n) = 4*a(n-1) + 9*a(n-2) - 36*a(n-3) in the sense that the numerator of the g.f. contains only a power of x.
FORMULA
a(n+1) - 4*a(n) = 0 if n even, = A001019((n-1)/2) if n odd.
G.f. x^2/( (3*x-1)*(3*x+1)*(4*x-1) ). - R. J. Mathar, Jul 04 2011
From G. C. Greubel, Jun 30 2016: (Start)
a(n) = 4*a(n-1) + 9*a(n-2) - 36*a(n-3).
E.g.f.: (1/42)*(exp(-3*x) - 7*exp(3*x) + 6*exp(4 x)). (End)
MATHEMATICA
LinearRecurrence[{4, 9, -36}, {0, 0, 1}, 100] (* or *) Table[(-7*3^n + (-3)^n + 6*4^n)/42, {n, 0, 50}] (* G. C. Greubel, Jun 30 2016 *)
PROG
(Magma) [(-7*3^n+(-3)^n+6*4^n) / 42: n in [0..30]]; // Vincenzo Librandi, Jul 01 2016
CROSSREFS
Sequence in context: A152215 A231175 A082044 * A329495 A042651 A225692
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 14 2009
EXTENSIONS
More terms from Vincenzo Librandi, Apr 05 2010
STATUS
approved