OFFSET
0,4
COMMENTS
This is the main sequence for the recurrence a(n) = 4*a(n-1) + 9*a(n-2) - 36*a(n-3) in the sense that the numerator of the g.f. contains only a power of x.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,9,-36).
FORMULA
a(n+1) - 4*a(n) = 0 if n even, = A001019((n-1)/2) if n odd.
G.f. x^2/( (3*x-1)*(3*x+1)*(4*x-1) ). - R. J. Mathar, Jul 04 2011
From G. C. Greubel, Jun 30 2016: (Start)
a(n) = 4*a(n-1) + 9*a(n-2) - 36*a(n-3).
E.g.f.: (1/42)*(exp(-3*x) - 7*exp(3*x) + 6*exp(4 x)). (End)
MATHEMATICA
LinearRecurrence[{4, 9, -36}, {0, 0, 1}, 100] (* or *) Table[(-7*3^n + (-3)^n + 6*4^n)/42, {n, 0, 50}] (* G. C. Greubel, Jun 30 2016 *)
PROG
(Magma) [(-7*3^n+(-3)^n+6*4^n) / 42: n in [0..30]]; // Vincenzo Librandi, Jul 01 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 14 2009
EXTENSIONS
More terms from Vincenzo Librandi, Apr 05 2010
STATUS
approved