Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 08 2023 02:42:09
%S 1,6,33,118,321,726,1441,2598,4353,6886,10401,15126,21313,29238,39201,
%T 51526,66561,84678,106273,131766,161601,196246,236193,281958,334081,
%U 393126,459681,534358,617793,710646,813601,927366,1052673,1190278,1340961,1505526,1684801
%N Main diagonal of number array A082105.
%C 4*a(n) can be written as (n^2 + 2*n + 1)^2 + (n^2 - 2*n + 1)^2 + (n^2 - 2*n - 1)^2 + (n^2 + 2*n - 1)^2. - _Bruno Berselli_, Jun 20 2014
%H G. C. Greubel, <a href="/A082106/b082106.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = n^4 + 4*n^2 + 1.
%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - _Harvey P. Dale_, Dec 06 2012
%F G.f.: (1 + x + 13*x^2 + 3*x^3 + 6*x^4)/(1 - x)^5. - _Bruno Berselli_, Jun 20 2014
%F E.g.f.: (1 + 5*x + 11*x^2 + 6*x^3 + x^4)*exp(x). - _G. C. Greubel_, Dec 22 2022
%F Sum_{n>=0} 1/a(n) = 1/2 + (Pi/4)*((1/sqrt(2)+1/sqrt(6))*coth(sqrt(2-sqrt(3))*Pi) - (1/sqrt(2)-1/sqrt(6))*coth(sqrt(2+sqrt(3))*Pi)). - _Amiram Eldar_, Jan 08 2023
%t Table[n^4+4n^2+1,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,6,33,118,321},40] (* _Harvey P. Dale_, Dec 06 2012 *)
%o (Magma) [(n^2+2)^2 -3: n in [0..40]]; // _G. C. Greubel_, Dec 22 2022
%o (SageMath) [(n^2+2)^2 -3 for n in range(41)] # _G. C. Greubel_, Dec 22 2022
%Y Cf. A082047, A082044, A082105, A082107, A082109.
%K nonn,easy
%O 0,2
%A _Paul Barry_, Apr 03 2003