Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Dec 27 2017 10:05:27
%S 1,1,1,1,4,1,1,7,7,1,1,10,13,10,1,1,13,19,19,13,1,1,16,25,28,25,16,1,
%T 1,19,31,37,37,31,19,1,1,22,37,46,49,46,37,22,1,1,25,43,55,61,61,55,
%U 43,25,1,1,28,49,64,73,76,73,64,49,28,1
%N Triangle read by rows: T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n.
%C This is member m = 3 of the family of triangles T(m; n, k) = m*(n - k)*k + 1, for m >= 0. For m = 0: A000012(n, k) (read as a triangle); for m = 1: A077028 (rascal), for m = 2: T(2, n+1, k+1) = A130154(n, k). Motivated by A130154 to look at this family of triangles.
%C In general the recurrence is: T(m; n, 0) = 1 and T(m; n, n) = 1 for n >= 0; T(m; n, k) = (T(m; n-1, k-1)*T(m; n-1, k) + m)/T(m; n-2, k-1), for n >= 2, k = 1..n-1.
%C The general g.f. of the sequence of column k (with leading zeros) is G(m; k, x) = (x^k/(1 - x)^2)*(1 + (m*k - 1)*x), k >= 0.
%C The general g.f. of the triangle T(m;, n, k) is GT(m; x, t) = (1 - (1 + t)*x + (m+1)*t*x^2)/((1 - t*x)*(1 - x))^2, and G(m; k, x) = (d/dt)^k GT(m; x, t)/k!|_{t=0}.
%C For a simple combinatorial interpretation see the one given in A130154 by _Rogério Serôdio_ which can be generalized to m >= 3.
%F T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n,
%F Recurrence: T(n, 0) = 1 and T(n, n) = 1 for n >= 0; T(n, k) = (T(n-1, k-1)*T(n-1, k) + 3)/T(n-2, k-1), for n >= 2, k = 1..n-1.
%F G.f. of column k (with leading zeros): (x^k/(1 - x)^2)*(1 + (3*k-1)*x), k >= 0.
%F G.f. of triangle: (1 - (1 + t)*x + 4*t*x^2)/((1 - t*x)*(1 - x))^2 = 1 + (1+t)*x +(1 + 4*t + t^2)*x^2 + (1 + 7*t + 7*t^2 + t^3)*x^3 = ...
%e The triangle T(n, k) begins:
%e n\k 0 1 2 3 4 5 6 7 8 9 10 ...
%e 0: 1
%e 1: 1 1
%e 2: 1 4 1
%e 3: 1 7 7 1
%e 4: 1 10 13 10 1
%e 5: 1 13 19 19 13 1
%e 6: 1 16 25 28 25 16 1
%e 7: 1 19 31 37 37 31 19 1
%e 8: 1 22 37 46 49 46 37 22 1
%e 9: 1 25 43 55 61 61 55 43 25 1
%e 10: 1 28 49 64 73 76 73 64 49 28 1
%e ...
%e Recurrence: 28 = T(6, 3) = (19*19 + 3)/13 = 28.
%t Table[3 k (n - k) + 1, {n, 0, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Dec 20 2017 *)
%o (PARI) lista(nn) = for(n=0, nn, for(k=0, n, print1(3*(n - k)*k + 1, ", "))) \\ _Iain Fox_, Dec 21 2017
%Y Cf. A077028, A130154.
%Y Columns (without leading zeros): A000012, A016777, A016921, A016921, A017173, A017533, ...
%K nonn,easy,tabl
%O 0,5
%A _Wolfdieter Lang_, Dec 20 2017