login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296175
G.f. equals the logarithm of the e.g.f. of A296174.
6
1, -7, -493, -341101, -680813601, -2923660883625, -22996362478599551, -299331006952284448127, -6006951481145880962408552, -176288642409787912257773903552, -7260231964238768891891716773249396, -405879958110794676900559524931590299892, -29968312587171485511980894312242331299164248, -2855987647850204274493781603297327940940773633392
OFFSET
1,2
COMMENTS
E.g.f. G(x) of A296174 satisfies: [x^(n-1)] G(x)^(n^4) = [x^n] G(x)^(n^4) for n>=1.
LINKS
FORMULA
a(n) ~ -sqrt(1-c) * 2^(8*n - 17/2) * n^(3*n - 9/2) / (sqrt(Pi) * c^n * (4-c)^(3*n - 4) * exp(3*n)), where c = -LambertW(-4*exp(-4)) = 0.07930960512711365643910864... - Vaclav Kotesovec, Oct 13 2020
EXAMPLE
G.f. A(x) = x - 7*x^2 - 493*x^3 - 341101*x^4 - 680813601*x^5 - 2923660883625*x^6 - 22996362478599551*x^7 - 299331006952284448127*x^8 - 6006951481145880962408552*x^9 - 176288642409787912257773903552*x^10 - 7260231964238768891891716773249396*x^11 - 405879958110794676900559524931590299892*x^12 +...
such that
G(x) = exp(A(x)) = 1 + x - 13*x^2/2! - 2999*x^3/3! - 8197751*x^4/4! - 81738176899*x^5/5! - 2105524335759389*x^6/6! - 115916378979693710123*x^7/7! - 12069952631345502122877199*x^8/8! - 2179911119857340269414590758951*x^9/9! - 639738016495616440994202167765715629*x^10/10! +...
satisfies [x^(n-1)] G(x)^(n^4) = [x^n] G(x)^(n^4) for n>=1.
Series_Reversion(A(x)) = x + 7*x^2 + 591*x^3 + 360071*x^4 + 696409901*x^5 + 2958728428011*x^6 + 23164541753169117*x^7 + 300801581861406441263*x^8 +...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^4)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^4 ); polcoeff(log(Ser(A)), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 07 2017
STATUS
approved