The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A296174 E.g.f. A(x) satisfies: [x^(n-1)] A(x)^(n^4) = [x^n] A(x)^(n^4) for n>=1. 6
 1, 1, -13, -2999, -8197751, -81738176899, -2105524335759389, -115916378979693710123, -12069952631345502122877199, -2179911119857340269414590758951, -639738016495616440994202167765715629, -289812262583683385183617291938537580840159, -194420626455357631368336026954933981532680935943, -186615832949734453391125561079799823405868770406129579 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare e.g.f. to: [x^(n-1)] exp(x)^n = [x^n] exp(x)^n for n>=1. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..160 FORMULA The logarithm of the e.g.f. A(x) is an integer series: _ log(A(x)) = Sum_{n>=1} A296175(n) * x^n. E.g.f. A(x) satisfies: _ 1/n! * d^n/dx^n A(x)^(n^4) = 1/(n-1)! * d^(n-1)/dx^(n-1) A(x)^(n^4) for n>=1, when evaluated at x = 0. a(n) ~ -sqrt(1-c) * 2^(8*n - 8) * n^(4*n - 4) / (c^n * (4-c)^(3*n - 4) * exp(4*n)), where c = -LambertW(-4*exp(-4)) = 0.079309605127113656439108647386463779474372... - Vaclav Kotesovec, Oct 13 2020 EXAMPLE E.g.f.: A(x) = 1 + x - 13*x^2/2! - 2999*x^3/3! - 8197751*x^4/4! - 81738176899*x^5/5! - 2105524335759389*x^6/6! - 115916378979693710123*x^7/7! - 12069952631345502122877199*x^8/8! - 2179911119857340269414590758951*x^9/9! - 639738016495616440994202167765715629*x^10/10! +... To illustrate [x^(n-1)] A(x)^(n^4) = [x^n] A(x)^(n^4), form a table of coefficients of x^k in A(x)^(n^4) that begins as n=1: [(1), (1), -13/2, -2999/6, -8197751/24, -81738176899/120, ...]; n=2: [1, (16), (16), -26992/3, -16767472/3, -164706495728/15, ...]; n=3: [1, 81, (5427/2), (5427/2), -246155517/8, -2300014714833/40, ...]; n=4: [1, 256, 30976, (6633728/3), (6633728/3), -2939838787328/15, ...]; n=5: [1, 625, 381875/2, 225885625/6, (122571375625/24), (122571375625/24), ...]; n=6: [1, 1296, 830736, 350400816, 108698540976, (126219948303024/5), (126219948303024/5), ...]; ... in which the diagonals indicated by parenthesis are equal. Dividing the coefficients of x^(n-1)/(n-1)! in A(x)^(n^4) by n^4, we obtain the following sequence: [1, 1, 67, 51826, 196114201, 2337406450056, 68145136372652611, 4136219111307043556272, 467591060765602023501093201, ...]. LOGARITHMIC PROPERTY. Amazingly, the logarithm of the e.g.f. A(x) is an integer series: log(A(x)) = x - 7*x^2 - 493*x^3 - 341101*x^4 - 680813601*x^5 - 2923660883625*x^6 - 22996362478599551*x^7 - 299331006952284448127*x^8 - 6006951481145880962408552*x^9 - 176288642409787912257773903552*x^10 - 7260231964238768891891716773249396*x^11 - 405879958110794676900559524931590299892*x^12 +... PROG (PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^4)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^4 ); n!*A[n+1]} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A296175, A296170, A296172, A296176. Sequence in context: A187592 A287036 A208315 * A220642 A260982 A159357 Adjacent sequences: A296171 A296172 A296173 * A296175 A296176 A296177 KEYWORD sign AUTHOR Paul D. Hanna, Dec 07 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 05:27 EDT 2024. Contains 373393 sequences. (Running on oeis4.)