login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220642
Number of ways to reciprocally link elements of an n X 6 array either to themselves or to exactly one king-move neighbor.
2
1, 13, 3096, 373177, 53841725, 7444342896, 1040315976961, 145000880411157, 20223491612180232, 2820152941289640505, 393283923444213896309, 54844809649495130675968, 7648317475647716579501281, 1066586359952790876210231837, 148739462164292054050115639320
OFFSET
0,2
COMMENTS
Column 6 of A220644.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..300 (terms n = 1..210 from R. H. Hardin)
FORMULA
Empirical: a(n) = 114*a(n-1) +4256*a(n-2) -91572*a(n-3) -1178554*a(n-4) +30456760*a(n-5) -130975946*a(n-6) -821286442*a(n-7) +8116096176*a(n-8) -10363446884*a(n-9) -106454109710*a(n-10) +356958898120*a(n-11) +328038015993*a(n-12) -2687705043916*a(n-13) +1546010691232*a(n-14) +7214129736088*a(n-15) -10475377691972*a(n-16) -2990479177712*a(n-17) +18333779754964*a(n-18) -16202802907924*a(n-19) -5141934133696*a(n-20) +21799390094104*a(n-21) -11778527057052*a(n-22) -4558878158992*a(n-23) +6009171204129*a(n-24) -2343244613126*a(n-25) +703880375232*a(n-26) +353889755932*a(n-27) -387967483426*a(n-28) +53576735032*a(n-29) -17639703466*a(n-30) -2578302306*a(n-31) -976631280*a(n-32) +921279564*a(n-33) -56415798*a(n-34) -4701240*a(n-35) -552825*a(n-36).
G.f.: see Maple program. - Alois P. Heinz, Jun 03 2014
EXAMPLE
Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..0..7..8..6..4..8....0..7..7..0..0..8....0..9..6..4..7..0....0..0..7..9..0..0
..3..9..2..0..0..2....3..3..0..6..4..2....8..9..1..3..0..8....0..3..0..0..1..8
..0..0..1..0..0..0....6..4..0..6..4..0....2..0..1..0..0..2....0..0..0..0..0..2
MAPLE
gf:= -(42525*x^34 +364905*x^33 +4427406*x^32 -69988761*x^31 +75088869*x^30 +126251376*x^29 +1409947907*x^28 -3807220353*x^27 +31562787626*x^26 -34451027911*x^25 -29205077493*x^24 +161219121840*x^23 -514135270654*x^22 +487268729962*x^21 +681687943708*x^20 -1511580215802*x^19 +660828588610*x^18
+669167562768*x^17 -1110589682746*x^16 +414093064814*x^15 +401344851300*x^14 -357570201838*x^13 -8972200506*x^12 +82109485328*x^11 -17558268975*x^10 -5482245411*x^9 +2504769654*x^8 -169204765*x^7 -66910711*x^6 +13483712*x^5 -491961*x^4 -56477*x^3 +2642*x^2 +101*x -1) / (552825*x^36 +4701240*x^35 +56415798*x^34 -921279564*x^33 +976631280*x^32 +2578302306*x^31
+17639703466*x^30 -53576735032*x^29 +387967483426*x^28 -353889755932*x^27 -703880375232*x^26 +2343244613126*x^25 -6009171204129*x^24 +4558878158992*x^23 +11778527057052*x^22 -21799390094104*x^21 +5141934133696*x^20 +16202802907924*x^19 -18333779754964*x^18
+2990479177712*x^17 +10475377691972*x^16 -7214129736088*x^15 -1546010691232*x^14 +2687705043916*x^13 -328038015993*x^12 -356958898120*x^11 +106454109710*x^10 +10363446884*x^9 -8116096176*x^8 +821286442*x^7 +130975946*x^6 -30456760*x^5 +1178554*x^4 +91572*x^3 -4256*x^2 -114*x +1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Jun 03 2014
CROSSREFS
Sequence in context: A287036 A208315 A296174 * A260982 A159357 A221885
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 17 2012
STATUS
approved